The Role of Al₂O₃, SiO₂ and Na₂O on the Amorphous → Crystalline Phase Transformation in Geopolymer Systems

Pre De Silva

Australian Catholic University, Sydney, Australia

Geopolymers - Chemistry

- Group of inorganic polymers
- Synthesis Amb. 100°C
 (Al₂O₃ + SiO₂) + Alkaline activator geopolymers
- Mechanism

dissolution, orientation, polycondensation \rightarrow polymeric network)

• Chemical formula - $M_n[-(SiO_2)_z - AIO_2]_n$.wH₂O (Z = 1,2,3 n = degree of polymerisation)

Na₂O.Al₂O₃.3.8 SiO₂.12 H₂O - (cement composition)

Amorphous or semi crystalline

Geopolymers & Zeolites

Zeolites – a class of aluminosilicate cpds

Similarities

- Raw materials
- Mechanism of reaction

 (dissolution, orientation, condensation
 gel like -> crystalline)
- Chemical composition

Na₂O-Al₂O₃-SiO₂-H₂O compositional diagram

Geopolymers & Zeolites

Differences

- Microstructure
 - geopolymers –amorphous or semi crystalline Zeolites - crystalline
- Different properties → Different Applications (identified in Portland cement – radioactive waste encapsulation)
- Thermodynamically geopolymers are metastable
- Crystalline structures identified in geopolymer matrix
- Long term stability of geopolymer phase?

Geopolymers & Zeolites

Some differences in synthetic conditions

Factors Controlling synthesis

- Curing temperature
- Ageing time
- Reaction rate
- Concentration of Alkaline activator (Na₂O)
- Water content
- SiO₂ & Al₂O₃ content

The degree of crystallinity is largely determined by product formulation and synthesis conditions. -very important in geopolymer product development

- Effect of SiO₂, Al₂O₃ & Alkali oxide on the stability of geopolymer phase with respect to crystallisation
- Low temperature curing regimes
- Long term stability & Impact on the physical properties

Materials & Experimental

- Metakaolin (complete reactivity)
- Sodium silicate / sodium hydroxide
- Curing temperature 40°C
- Curing time 7 months
- Compressive strength
- Phase development (XRD, SEM, EDAX)

Mix Formulations

Changing SiO₂ content Mix 1, 2, 3 (Si38, Si30, Si25)

Changing AI_2O_3 content Mix 4, 2, 5 (Al06, Al10, Al12)

Changing Na₂O content Mix 6, 2, 7 (Na07, Na10, Na14)

(Y, X, A, P, S, HS)

Zeolite compositions

Mix Formulations

Sample	Initial composition	SiO ₂	Al_2O_3	Na ₂ O	SiO ₂ /Al ₂ O ₃	Al ₂ O ₃ /Na ₂ O	SiO ₂ /Na ₂ O
		(moles)	(moles)	(moles)	(molar	(molar ratio)	(molar
					ratio)		ratio)
Si-38	1.0Na ₂ O.1.0Al ₂ O ₃ .3.8SiO ₂ .13.6H ₂ O	3.81	1.0	1.0	3.81	1.00	3.80
Si-30	1.0Na ₂ O.1.0Al ₂ O ₃ .3.0SiO ₂ .13.6H ₂ O	3.00	1.0	1.0	3.00	1.00	3.00
Si-25	1.0Na ₂ O.1.0Al ₂ O ₃ .2.5SiO ₂ .13.6H ₂ O	2.50	1.0	1.0	2.50	1.00	2.50
Al-06	1.0Na ₂ O.0.6Al ₂ O ₃ .3.0SiO ₂ .13.6H ₂ O	3.00	0.6	1.0	5.01	0.60	3.00
Al-10	1.0Na ₂ O.1.0Al ₂ O ₃ .3.0SiO ₂ .13.6H ₂ O	3.00	1.0	1.0	3.00	1.00	3.00
Al-12	1.0Na ₂ O.1.2Al ₂ O ₃ .3.0SiO ₂ .13.6H ₂ O	3.00	1.2	1.0	2.50	1.20	3.00
Na-07	0.7Na ₂ O.1.0Al ₂ O ₃ .3.0SiO ₂ .16.3H ₂ O	3.00	1.0	0.7	3.00	1.70	4.28
Na-10	1.0Na ₂ O.1.0Al ₂ O ₃ .3.0SiO ₂ .13.6H ₂ O	3.00	1.0	1.0	3.00	1.20	3.00
Na-14	1.4Na ₂ O.1.0Al ₂ O ₃ .3.0SiO ₂ .13.6H ₂ O	3.00	1.0	1.4	3.00	0.86	2.14

SiO₂ series – Si38, Si30, Si25

Al₂O₃ series – Al06, Al10, Al12

Na₂O series – Na07, Na10, Na14 H₂O - CONSTANT

Compressive Strength Development

Si-38 > Si-30 > Si-25 Al-10 > Al-06 > Al-12. Na-07 > Na-10 > Na-14

Phase Development – XRD (High Strength Category)

Amorphous phase throughout

(broad band around 28° 2-theta)

Similar pattern for Na-07 & Si-30

Mix Formulation – Si-38 High Strength Category

Microstructure - SEM (High Strength Category)

Na-07, Si-38 and Si-30 Dense, homogeneous phases

Phase Development – XRD (Low Strength Category)

- Transition of amorphous to crystalline (mainly Zeolite A & Zeolite P)
- Associated with low strengths

Microstructure – SEM (Low Strength Category)

Si 25 Porous microstructure

Higher magnification of Si 25

EDAX – Zeolite P

Conclusions

- Amorphous -> crystalline transformation occur in some mixtures
- High Al₂O₃ (SiO₂/Al₂O₃ = 2.5) and High Na₂O (Na₂O/SiO₂ = 1.4) favours amorphous → crystalline transformation
- Na₂O.Al₂O₃.3.8SiO₂.13H₂O no tendency towards phase transformation
- Tentative relationship between development of crystalline phases and low strengths
- Initial mix formulation key parameter
- findings can be relevant to the practical phase development of geopolymer systems under initial prolonged exposure to mild temperatures and high humidity levels.

THANK YOU