Geopolymer Formation via Metaclays and using Ferrihydrite Ch. Kaps and M. Hohmann

Bauhaus-University Weimar, Germany Chair of Building Chemistry

christian.kaps@uni-weimar.de

marc.hohmann@uni-weimar.de

GeopolymerCamp 2010

Outlook

- Introduction: Two-step procedure for generation of inorganic networks
- 3. Metaclays for geopolymer cements
- 5. Iron-phosphate network binder using Ferrihydrite ("FeO(OH")
- 6. Summary and Conclusions

Bauhaus- University ("Van de Velde-Bau") Main Building

1. Introduction

2. Metaclays for geopolymer cements

Raw material and thermal activation

Smectitic/illitic clay Ndh, Nordhausen (Germany)

Component	SiO ₂	AI_2O_3	Fe ₂ O ₃	CaO	MgO	K ₂ O	Na₂O	SO ₃		
Content	64.8	13.7	4.9	1.0	2.6	4.0	0.2	not de- tectable	wt.%	
Three-layer-minerals: about 58 wt.%										
Estimated me	olar Si/A	l <u>ratio:</u> 3 v	3.5(total, including quartz), 1.7(only three-layer clay minerals with assumed Si/AI substitution) and 1.1(all clay minerals)							

Conditions of the thermal activation

Temperature procedure	Heating rate: 200 K/h					
	Firing temperatures (1 h): 650, 750, 850 and 950°C					
	Cooling: in the furn	Cooling: in the furnace, without electronic control				
Gas atmosphere over the clay	Direct burning:	in air, open (dry, oxidizing)				
	Indirect burning:	in degassing atmosphere, encapsu- lated(wet, reducing)				

2. Metaclays for geopolymer cements

Phase compositions of the metaclays

breakdown of three-layer minerals and increasing content of amorphous components

Start of amorphization: at 750°C (ind) at 850°C (dir)

Comparison of the Chapelle test and the summary (Si+AI) solubility

correspondence of the both methods

maximum values of activity: at 750°C (ind) at 850°C (dir)

Evolution of the molar ratio Si/Al in the alkaline solution of the metaclays

after 7 days: 2.2 < Si/Al < 3.0 (750°C, ind) 2.3 < Si/Al < 3.2 (850°C, dir)

Si/Al > 3.5 !

at higher temperatures

2. Metaclays for geopolymer cements

Influence of burning conditions on the strength of the binders – alkali-activated metaclays (90d, 75% r.h., 20°C)

Preparation of iron-phosphate networks

<u>Hypothesis:</u> Condensation steps

$(HO)_2Fe-OH + HO-PO(OH)_2 \rightarrow (HO)_2Fe-O-PO(OH)_2 + H_2O$

Raw materials and characteristic of the iron oxyhydroxide

Mineral phases of IO:		amorphous Ferrihydrite ("FeO(OH)", ≳ 55 wt.%)								
Calcite (cryst. CaCO₃, ≈ 10 wt.%)										
Analized compo- nents of IO	Fe ₂ O ₃	CaO	SiO ₂	MnO	P_2O_5	MgO	Al ₂ O ₃	Na₂O	K₂O	TiO ₂
[wt.%]	71.3	10.0	14.5	1.5	1.4	0.7	0.3	0.2	0.03	0.01
Iron-oxyhydroxide, IO technical residual product, amorphous (XRD)										
<u>P</u> hosphoric <u>a</u> cid; F	H ₃ PO ₄ , cons. (85%), p.a.									
<u>W</u> ater, W	H₂O, deionised water									

Working area in the system Iron oxyhydroxid (IO) - Phosphoric acid (PA) - Water (W)

<u>Composition lines with</u> PA/W ratios:					
g1: 0.89	g2: 1.8				
g3: 4.7	g4: ∞				

w.a.: working area with relevant binder action

- n.w.: no workability
- n.s.: no setting
- p.g.: permanent gel-state

Glass-like materials by sufficient water content

Fe⁰ additions in iron-phosphate networks - structural aspects

3. Iron-phosphate network binder

Influence of Basalt (B) and Flyh Ash (FA) of the compressive strength

increase of the chemical durability (attack by boiling water)

Enlargement of the strength by a factor of two

Metaclays for geopolymers cements were prepared by a *direct and indirect burning* of a smectitic/illitic clay (Nordhausen, Germany).

- The indirect burning (water vapour) generates *metaclays*, showing already at 750°C *remarkable contents of amorphous aluminosilicates* (XRD, solubility in NaOH).
- In the alkaline solution, the optimum molar Si/Al ratio of 2.2 3.0 leads to a *high binder performance* (no contribution of higher values to the strength!)
- The strength of the geopolymers is limited by the formation *of new crystalline phases* (spinel) in the metaclays at higher firing temperatures around 950°C.
- In comparison, the direct burning (air, 850°C) results in not so developed effectiveness and needs more energy, demonstrating the meaning of definite conditions for the thermal activation.

Iron-phosphate binders were generated by acidic activation of an *iron oxyhydroxide by phosphoric acid* (H_3PO_4)

- Polycondensation as the dominant reaction is probable in the process of setting (tacky behavior of the binder, XRD).
- \neg Amorphous networks are formed in presence of a sufficient amount water and partial crystallization can be observed owing to an increasing H₃PO₄ content.
- Small amounts of Fe⁰ (iron powder) lead to glass-ceramic binders and stoichiometric additions of Fe⁰ cause a filling up (densification) of the amorphous iron phosphate networks (XRD).
- The addition of *slightly basic mineral powders* (Basalt, Flyh Ash) improves the resistivity against boiling water and the strength of the composite materials.

Both investigations demonstrate the importance of the knowledge of *suitable conditions for the thermal activation of clays* and *for acidic activation of iron oxyhydroxid*, especially the *role of water* in the vapor and in the binder mixtures is exciting.

Thank you for your attention !

Compositions of cements, alkali-activated slags(AAS) and geopolymers

