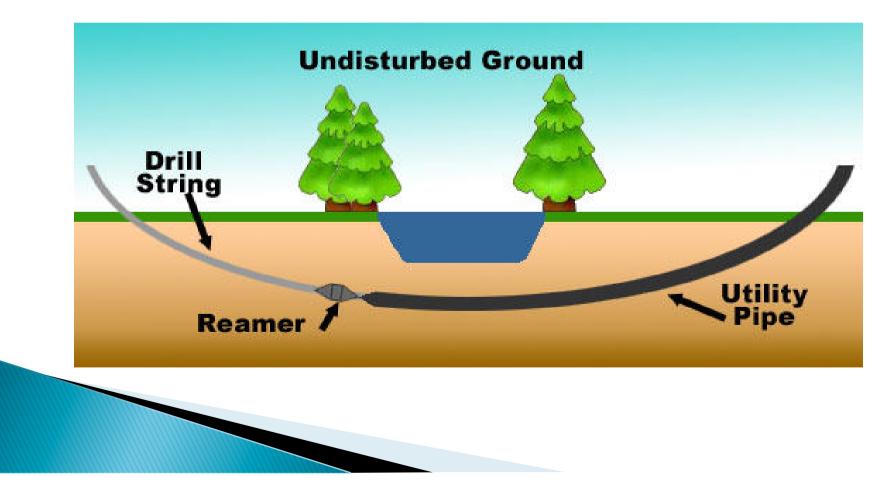

GEOPOLYMER COATING FOR THE REHABILITATION OF CONCRETE-BASED WASTEWATER COLLECTION SYSTEMS

Carlos Montes Erez Allouche

TRENCHLESS TECHNOLOGY CENTER LOUISIANA TECH UNIVERSITY

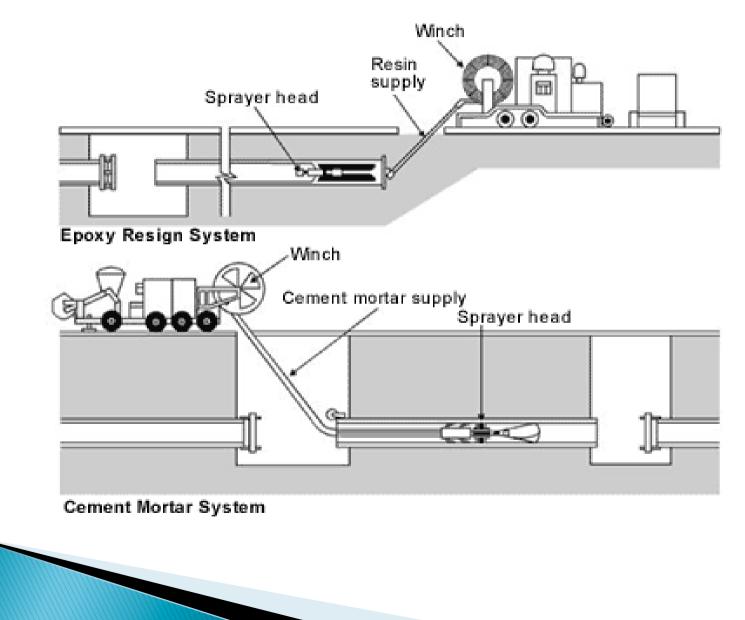
THE TRENCHLESS TECHNOLOGY CENTER

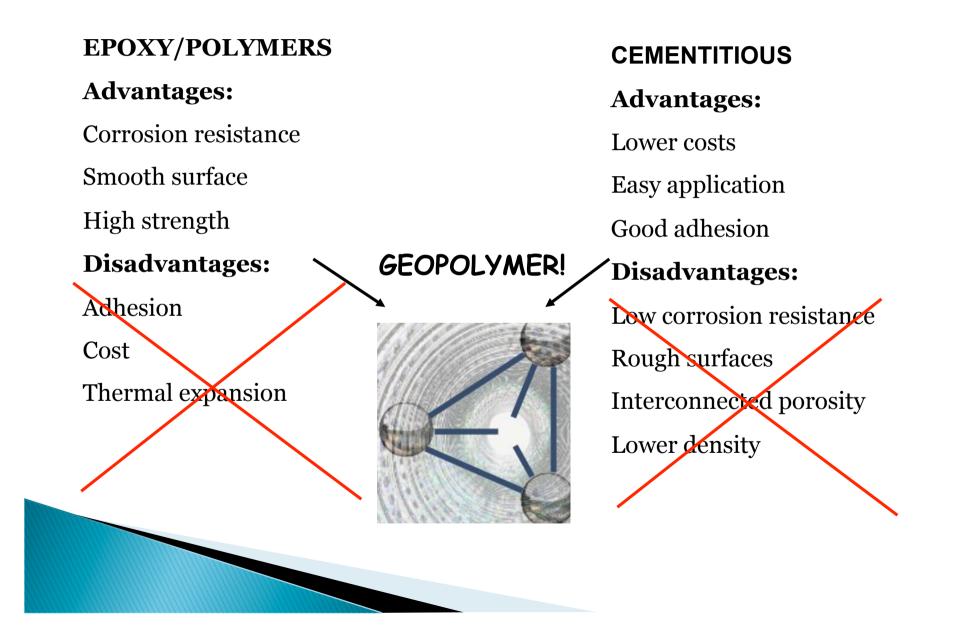

The Trenchless Technology Center located within Louisiana Tech University is the first academic research center to be established in North America to support the growth of trenchless technology through research and education.

TRENCHLESS TECHNOLOGY

Trenchless Technology is a family of methods for the **installation**, **rehabilitation** and **replacement** of new or existing underground facilities with minimal disruption of land and services, low costs and low environmental impact.

SCOPE OF TTC RESEARCH


One of the main objectives of TTC research is to find novel solutions for the rehabilitation of sewer pipes and other underground utilities like manholes.



THE SPRAY LINING TECHNIQUE

ACTUAL MATERIALS USED IN TT PROJECTS

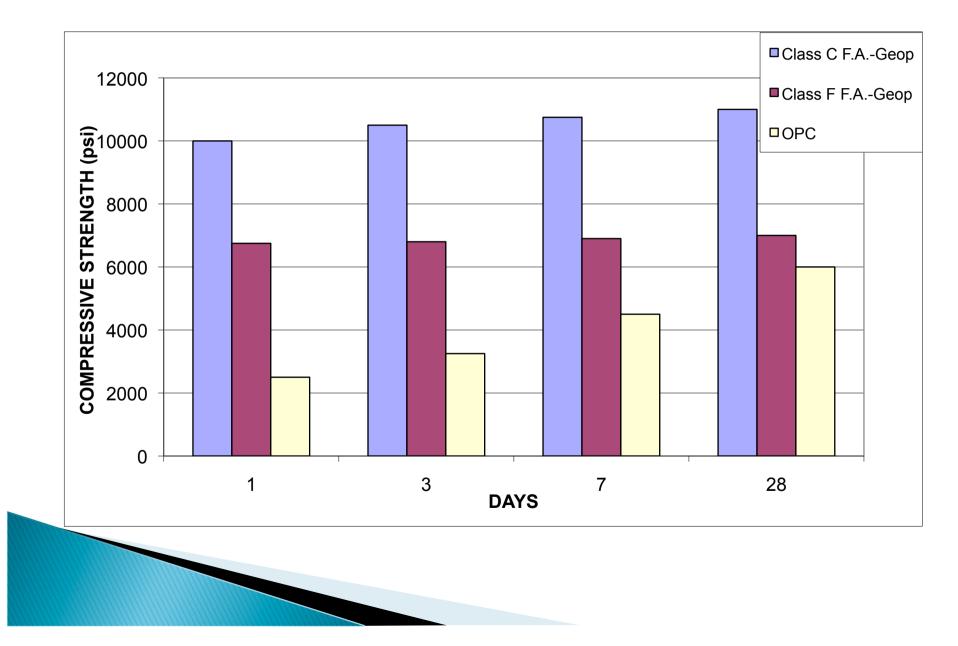


RESEARCH PLAN

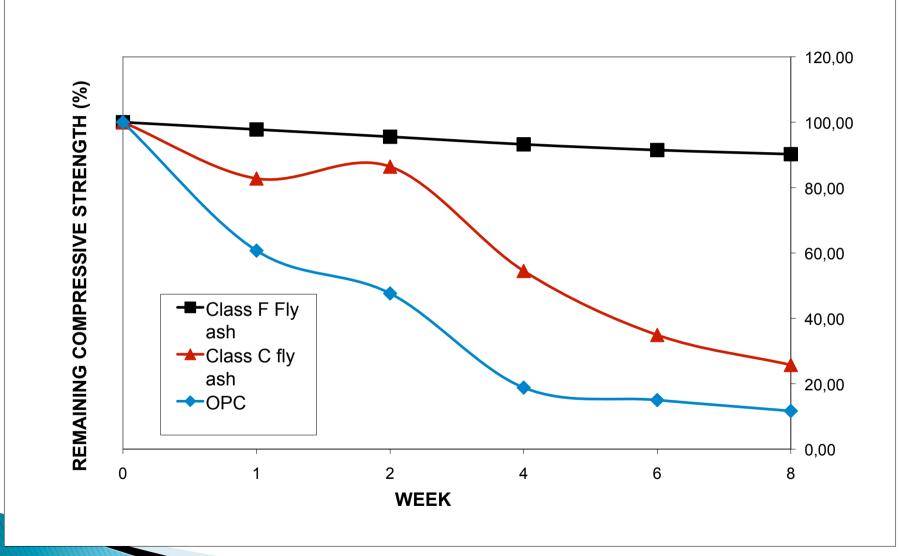
- Study the impact of several variables on the properties of geopolymers:
 - Raw material selection from local sources
 - Composition of the alkaline solution
 - Curing regime

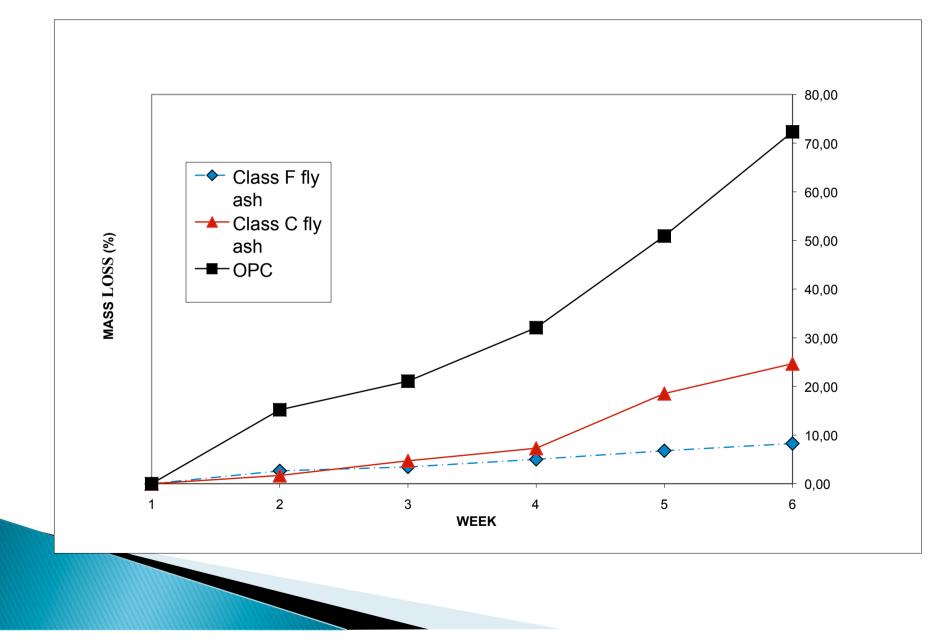
• To enable geopolymer to be applied as a cementitious coating with existing cementitious spray technology.

- To perform field tests in confirmation of lab results.
- To produce an optimal formulation to be used in real scale projects.

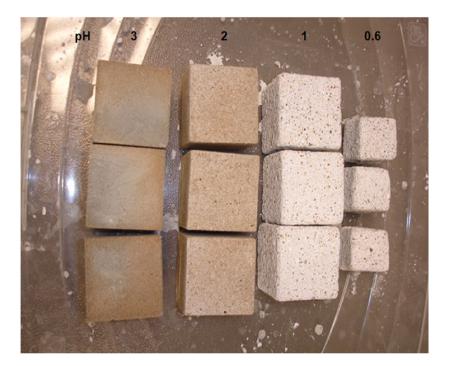


RAW MATERIALS


Oxide	Metakaolin, wt %	Class C	Class F	OPC, wt %		
		Fly Ash, wt %	Fly Ash, wt%			
SiO2	54.26	48.7	50.25	26.12		
AI2O3	39.82	16.6	22.56	4.25		
Fe2O3	2.91	6.93	20.0	3.65		
CaO	0.70	18.72	2.1	58.51		
MgO	1.51	3.91	0.00	1.59		
SO3	0.01	0.85	0.50	2.36		
LOI	0.72	0.49	2.48	2.67		
Na2O	0.00	0.00	0.00	0.14		
K2O	0.00	0.00	0.00	0.52		
Total	99.93	96.2	97.89	99.8		
SiO2/Al2O3	1.36	2.93	2.23	3 6.15		
SiO2 + Al2O3	94.08	65.30	72.81	30.37		


COMPRESSIVE STRENGTH

REMAINING COMPRESSIVE



MASS LOSS

VISUAL APPEARANCE



OPTIMIZATION OF THE ACTIVATOR SOLUTION

Dinitab - SILICATE HYDROXIDE MAY 19 REVISION WITH REPETITIONS.MPJ																
<u>F</u> ile <u>E</u> dit D <u>a</u> ta <u>C</u> alc <u>S</u> tat <u>G</u> raph E <u>d</u> itor <u>T</u> ools <u>W</u> indow <u>H</u> elp																
- 																
-	ª-⊒⊷ai															
Ses																
																*
Inte	raction Plot	(data means) for	Remain. Comp.	Str. (%)												
II —	3/23/2	010 3:15:25 PM														
Welc	ome to Minitak	o, press F1 for 1	heln		(0.15.1				— X						
Retr	ieving project	from file: 'C:	USERS\MONTECAR	RLOSTAR\DOCUMENTS\LA		Create Facto	riai Design									
	THESIS\DESIGNS OF EXPERIMENTS\SILICATE HYDROXIDE MAY 19 REVISION WITH REPETITIONS.MPJ'					Type of Des	-									
						2-level factorial (default generators) (2 to 15 factors) 2-level factorial (specify generators) (2 to 15 factors)										
						C Plackett	-Burman desig	n	(2 to 10 fa							-
						C General	full factorial de	esign	(2 to 15 fa	ctors)						► at
Worksheet 2 ***							_			1					X	
+	C5-T	C6	C7	C8	C9	Number of factors: 2		Display Available Designs			C16	C17	C18	C19	-	
		-	-	Remain. Comp. Str.					Designs	Factors						_
	D	10 10	2		10.94 10.06				Options	Results						_
2	Star	10	3	81.19	10.06	Help	1		ОК	Cancel						_
	Star	6	3	53.70	15.17											_
5	Star	10	2	88.55	13.85	98.0	_	_		_						
6	D	10	1	84.77	11.02	67.0										
7	Star	14	1	76.06	11.83	68.0										
8	Ν	14	2	61.88	9.47	66.5										_
9	D	6	3	94.08	8.12	46.0										_
10	N	14	3	78.42	11.68	71.0										
1																•

DESIGN OF EXPERIMENTS

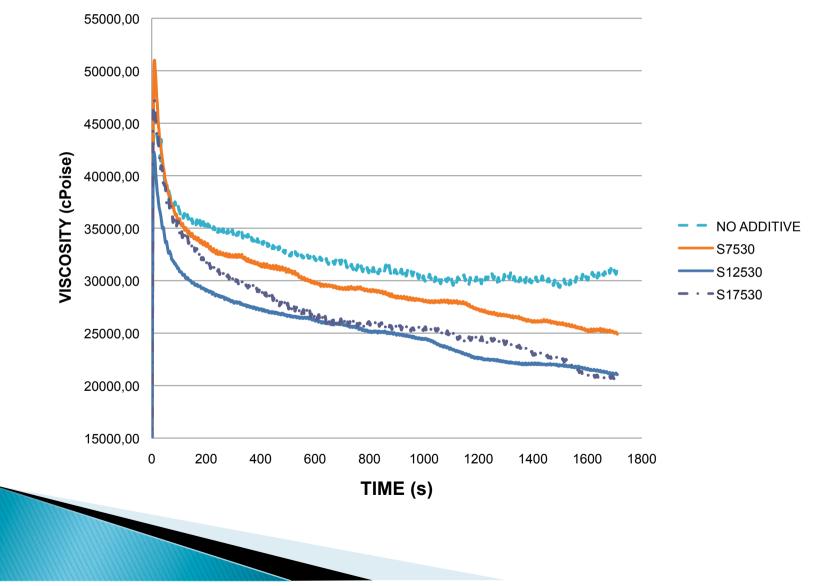
RESEARCH VARIABLE	LEVELS					
Silicate type	D, N and Star					
Hydroxide molarity	6, 10 and 14					
Silicate/Hydroxide ratio	1, 2, 3					
FIXED PARAMETERS						
Fly ash type	Class F					
Fly ash:sand ratio	1:1					
RESPONSE VARIABLE	NORM					
Compressive strength in cubes	ASTM C-109					
Remaining compressive strength	ASTM C-267					
Mass loss	ASTM C-267					
Flow	ASTM C-1437					

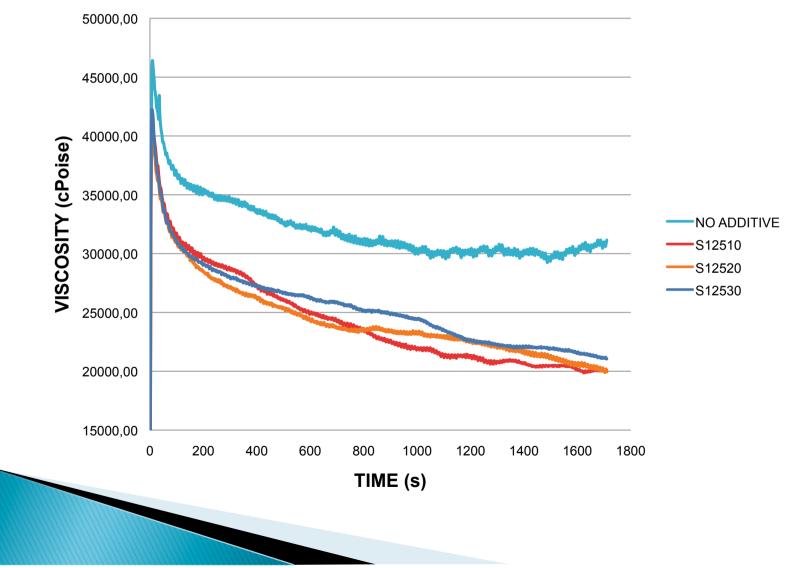
SPRAYING TESTS

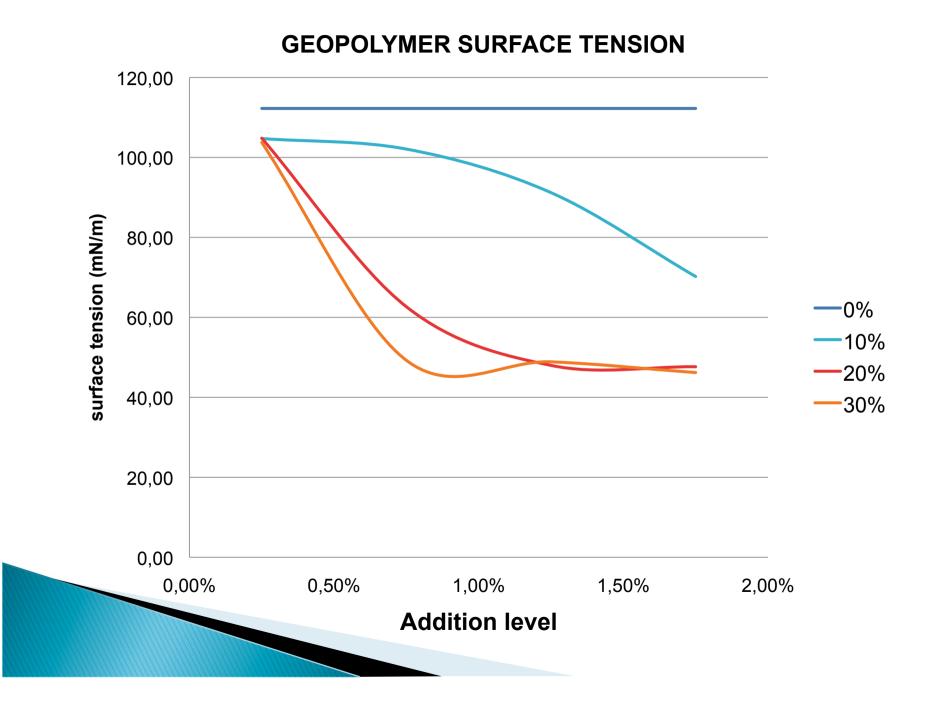
• A number of additives was tried to evaluate their effect on geopolymer's viscosity and other rheological parameters.

• Lab tests modifying the **concentration** and **% of addition** were performed to help tune the amount and type of additive to be used.

• An important control in geopolymer's viscous behavior was obtained after a number of tests.


• Field tests were conducted to prove results obtained in the lab.


SPRAYING TESTS

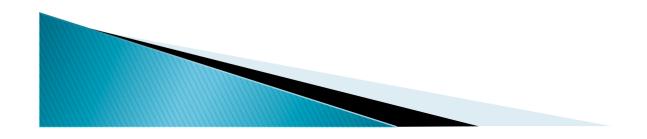

DYNAMIC VISCOSITY

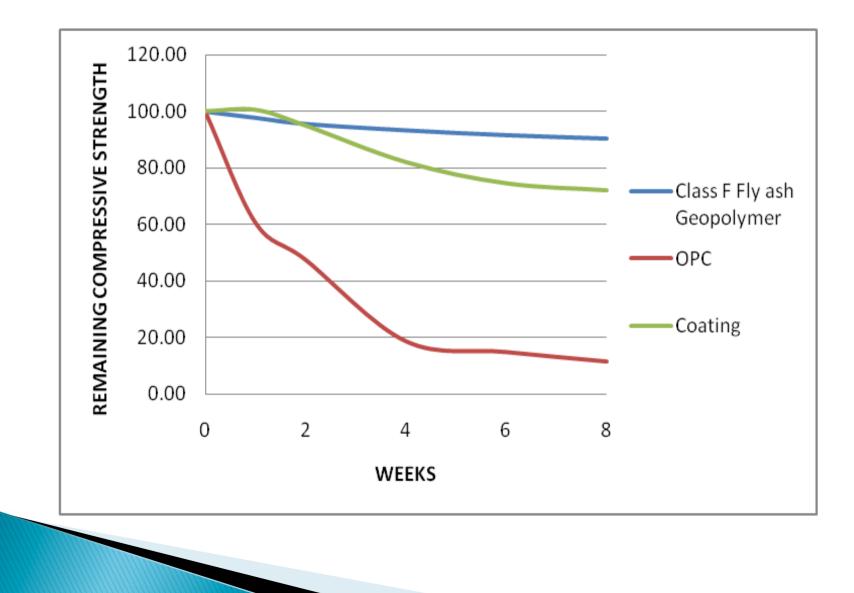
SPRAYING TESTS

DYNAMIC VISCOSITY

RESULTS – FIELD TESTS

RESULTS – FIELD TESTS


RESULTS – FIELD TESTS


 Geopolymer samples stored inside manhole in Pensacola, FL

• Manhole is re-coated every six months with Portland cement.

• Geopolymer samples did not experience mass loss in six months.

CORROSION RESISTANCE

TAKING GEOPOLYMER TO THE FIELD

- Currently working to take prototype to the field
- Short term goals to reduce curing time and increase thickness of spray
- First real manhole applications within the next months.
- These tests will take place in the cities of Cincinnati and St. Louis.

SUMMARY AND CONCLUSIONS

• A novel geopolymer-based cementitious product prototype was developed at Louisiana Tech as an alternative material for Trenchless rehabilitation projects.

• This represents the first time that geopolymers are considered for Trenchless rehabilitation projects.

• The modification of geopolymer's surface tension proved to be a substantial aid to solve geopolymer workability problems.

• Real life manhole rehabilitation projects will be performed during this year.

• We expect geopolymer to gain reputation as an excellent rehabilitation material and to be used by contractors as one of their choices when bidding for projects.

