
Utilization of biomass ashes

Ivana Perná¹ Tomáš Hanzlíček¹ Zdeněk Ertl²

¹Institute of Rock Structure and Mechanics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic ²The Czech Development Agency, o.p.s., Prague Czech Republic

Burning of biomass

The Institute of Rock Structure and Mechanics of Academy of Sciences of the Czech Republic, v.v.i Wastes and following problems

- Czech Republic: more than 60 biomass heat stations (more than 2 MW)
 ⇒ 40,000t of wastes per year
- High pH value of water extract pH>11
- Necessity of special deposition
- Increasing of operating and heat costs

Possibilities

- Deposition of wastes increasing of deposition costs, necessity of new storage areas
- 2. Recycling of proportion of biomass ashes back to the soil as fertilizer
- New materials additives to the special mixtures and composites created by geopolymer technology

Materials

Metakaolin – 750°C

A) Sodium Silicate + Sodium Hydroxide

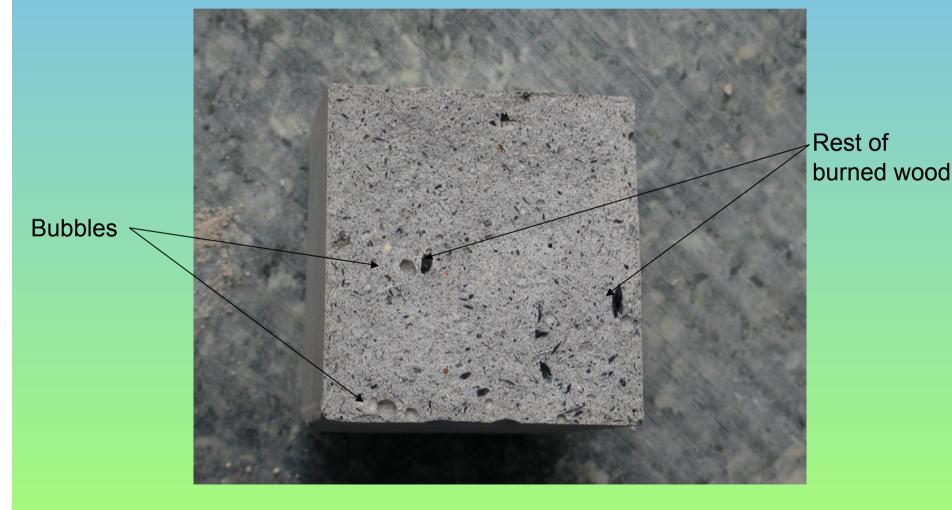
B) Potassium Silicate + Potassium Hydroxide

Additives – wood cinder

- Czech Heat Power Plants burn wood chips and sawdust (90 % conifers and 10 % broadleaved trees).
 - Average chemical analysis of cinder from wood (wt. %):

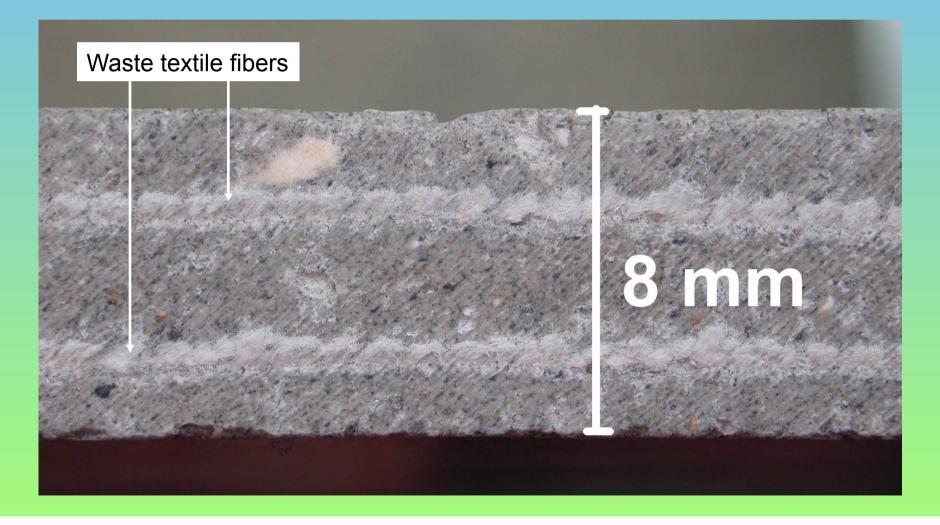
Oxides	SiO ₂	Al ₂ O ₃	CaO	SO ₃	K ₂ O	Fe ₂ O ₃	LOI
Wooden cinder	56.1	10.59	14.17	0.06	5.55	8.47	0.1

- Bystřice nad Pernštejnem
- Třebíč
- Trhové Sviny-

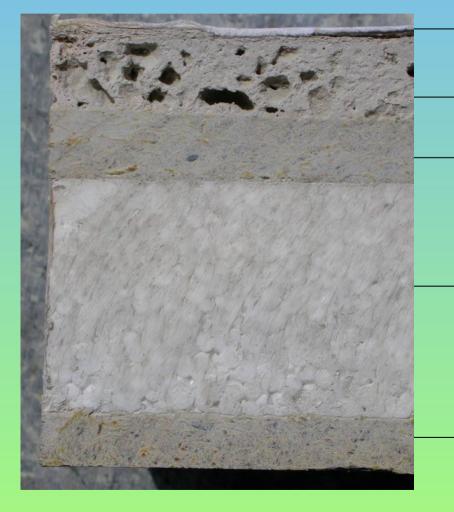


Mechanical properties of 28-days-old samples

Geopolymer with ash addition		Filling (Wt. %)	Flexural strength (MPa)	Compressive strength (MPa)	
Na ⁺ solution		29	0.86	56.88	
	Třebíč	41	1.17	39.69	
		62	0.47	11.04	
		58	2.07	49.79	
	Trhové Sviny	61	1.27	24.38	
		66	2.60	33.96	
	Bystřice nad	38	5.15	35.88	
	Pernštejnem	43	4.21	36.72	
K ⁺ solution	Třebíč	33	1.01	67.50	
	Trhové Sviny	55	4.48	60.8	



Fracture area of geopolymer with bio-ash from Trhové Sviny



Multi-layered composite prepared from biomass ash Bystřice nad Pernštejnem

Multipurpose composite

- Paper layer for final decoration of inner wall
- Foamed layer heat and acoustic insulating function
- First supporting layer geopolymer with addition of bio-ash and wood waste material
- Polystyrene layer heat insulation of material protected from both sides against fire
- Second supporting layer geopolymer with addition of bio-ash and wood waste material

Sound, heat and fire resistant material

Resistance to 1200°C without shrinkage or cracks

Heat conductivity factor λ =0.331 W.m⁻¹.K⁻¹

Comparison: Clay building brick: λ =1.2 W.m⁻¹.K⁻¹ Concrete block: λ =1.5 W.m⁻¹.K⁻¹ Slag concrete block: λ =0.7 W.m⁻¹.K⁻¹

Sound absorption coefficient $\alpha = 0.69 - 0.74$

Conclusion

- Ashes from biomass combustion could be easily used
- Utilization is focused on building industry
- Solid and resistant materials create by geopolymer technology
- Composite materials with specific properties

Thank you for your attention

Acknowledgement:

 This work is supported by Scientific Research Plan No.: AVOZ 30460519 of the Institute of Rock Structure and Mechanics approved by Czech Academy of Sciences and by the Czech Development Agency through the project FI-IM5/146.