

EPSRC DIAMOND Consortium Nuclear Waste and Decommissioning

An assessment of drying shrinkage in metakaolin-based geopolymers

Carsten Künzel^{1,2}

Chris Cheeseman¹, Luc Vandeperre² and Aldo Boccaccini³ ¹Department of Civil and Environmental Engineering, Imperial College ²Department of Materials, Imperial College ³Department of Materials, University Nürnberg-Erlangen

Problem: Cracking of Geopolymers

Investigation why cracking occurs

Conclusions

Problem: Cracking of Geopolymers

Geopolymers cured over a long time at room temperature, without cover

Experiments

metakaolin, Na₂SiO₃ + NaOH solution was mixed

1 day cured in sealed bags at RT and removed

further curing in sealed bags for 56 days

molar ratio was altered

- Al:Si:Na:H₂O 1:2:1:x x= 7.5 to 10.5
- AI:Si:Na:H₂O 1:x:1:8 x= 1.6 to 2.4
- AI:Si:Na:H₂O 1:2:x:8 x= 0.75 to 1.3
- AI:Si:x:H₂O 1:2:1:8 x= Na/K

Influence of H₂O on cracking

Dilatometer results

Influence of H₂O on cracking

Shrinkage measured using an extensometer

Influence of H₂O on cracking

Flexural strength: 3 point bending test

Influence of H₂O on cracking

Shrinkage of Geopolymers

Influence of Si on cracking

Onset point of shrinkage measured using extensometer

Influence of Si on cracking

Shrinkage during heating determined by dilatometry

Influence of Si on cracking

Colloids and Surfaces A: Physicochem. Eng. Aspects 269 (2005) 47–58

Influence of Na on cracking

Onset point of shrinkage measured using extensometer

Influence of Na/K and Si ratio on cracking

Onset point of shrinkage measured using extensometer

Influence of Na/K and Si ratio on cracking

Shrinkage during heating determined by dilatometry

Influence of Na/K and Si ratio on cracking

Comparing Na and K

	Na⁺	K+
Radius, Å	0.97	1.33
charge density [Z/r]	1	0.75
$\Delta H^{\circ}_{hydn}/kJmol^{-1}$	-406	-322

Na has high charge density, means it remains hydrated during geopolymerisation

K has smaller hydration sphere compared to Na and water bond weaker

Conclusion

Results to date

Influence of water saturation after cation has lost hydration sphere

Coming soon:

Thank you for your attention

Contact: <u>c.kuenzel08@imperial.ac.uk</u>

Many thanks to EPSRC and DIAMOND Consortium for support .