Metakaolin for Geopolymers

Geopolymer Institute Camp - Saint Quentin - July 2013 Alf Baker CEO WA Kaolin & Pacific Polymers R&D JV

Why Bother?

- **Responsibility** > 4 billion tonnes cement production major emitter CO2
- Availability Kaolin is global resource quality of kaolin probably not critical
- Universality We can develop this in all of our countries and economies

The Challenges:

- Technology Becoming Mature (with help from Geopolymer Institute and academia)
- Commercialise Industry slow to move unless COST ADVANTAGE

Village of Gaoling (Kao-ling) where the clay was mined until the late Ming Dynasty

MAJOR KAOLIN PRODUCERS 1980-2012

<u>1980</u>	1990	2000	2008	2012	
ECCI	ECCI	IMERYS	IMERYS	IMERYS	
HUBER	HUBER	HUBER	KAMIN	KAMIN	
THIELE	THIELE	THIELE	THIELE	THIELE	
AKW	AKW	AKW	AKW	AKW	
ENGELHARD	ENGELHARD	ENGELHARD	BASF	BASF	
CADAM	CADAM	CADAM	VALE	SIBELCO	
GEORGIA KAOLIN	DRY BRANCH	PPSA	SIBELCO		
FREEPORT	NORD	UNIMIN			
NORD	COMALCO				
CYPRUS	EVANS				
COMALCO	KENTUCKY-TENNESSEE				
EVANS	ALBION				
KENTUCKY-TENNESSEE					
R.T. VANDERBILT					
ALBION					

MAJOR GLOBAL KAOLIN DEPOSITS

USA - Georgia

WAK MINING Free Dig, Shallow Open Pits down to 40m

- Mining Lease M70/1143 10sqKm 112mt reserve.
- Retention Licenses 106sqKm WAK

Note: WAK owners control 12sqkm of farmland in the resources area.

RESOURCE STATEMENT

JORC COMPLIANT

Dr Ian Wilson and confirmed by CVRD/ Vale

RESOURCE	AREA REF	Million Tonnes			
Proved Ore Reserve	ML 1143	112.0			
TOTAL PROVED ORE RESERVES	<u> </u>				
Inferred Resources	RL 70/40	13.6			
	RL 70/41	6.7			
	RL 70/42	122.7			
	RL 70/43	128.0			
	RL 70/44	192.5			
TOTAL INFERRED RESOURCES		<u>463.0</u>			
VERY LARGE DEPOSIT IN WORLD TERMS					

Proven Reserves give Mine Life of 100+ years at 1Mtpa Production

Existing WAK Operations

Open Pit Mine

Loading

Wet Screening

Full size Centrifuge

Existing WAK Operations

Full scale mixing and granulation

Finished Product (1 tonne bulk bags)

Drying

QC Analysis Lab

FEED FROM TOP BOTTOM OF KILN

SANHE-MULLITE PRODUCTION OF MC-0

CLAY SELECTION

BRICK MAKING

STACKING IN ROUND KILN

UNLOAD ROUND KILN

CRUSHING

FINAL PRODUCTS

TORBED* Process Reactor Technology

KAOLIN PARTICLES ARE PASSED RAPIDLY THROUGH HEATING ZONEWHERE THEY ARE FLASH CALCINED. RESIDENCE TIME IS LESS THAN ONE SECOND IN A TOROIDAL FLUID FLOW HEATING ZONE. KAOLINITE IS BLISTERED CAUSED BY RAPID DEHYDROXYLATION.

Traditional Calcination

- China Hard Black Kaolin naturally occurring with a form of coal
- Hearth furnaces
- Rotary Kilns
- Flash Calcining Herreschoff US/UK agglomerates and pillows
- Torbed Driers
- Issues relate to:
 - Energy consumption
 - Dusting
 - Agglomeration requiring regrind

25mt World consumption by industry 2010

What would this chart look like if kaolin used in GPC?

If Kaolin is used in Geopolymer Cement (GPC) and, lets say:

- Global OPC production is 4bt
- by 2025 20% of OPC is substituted by GPC
- GPC formula contains 20% kaolin

World consumption of kaolin could rise to 200mt!

Australia produces close to 10mt OPC On same basis - kaolin consumption would be 400kt

Question: Overall, how much kaolin could be used?

CONCLUSION

Commercialisation of Kaolin for GPC requires: >Focussed Development of Dehydroxylation/Activation of Kaolin< >Lowest Possible Cost of Production<

The quest and opportunity to displace OPC requires an extraordinary focus to collate all of the technologies available in an innovative way to minimize the energy and cost of preparing the raw materials for GPC

- Temperature
- Atmosphere
- Chemical Environments
- Mechanical Environments
- Particle Shape Engineering

Somehow I think the future for kaolin it will be driven by downstream niche products such as light weight fire panels, waste containment.

WAK in association with Pacific Polymers has built a 1t capacity pilot plant in Melbourne to examine these factors and work hard towards optimization

I look forward to learning much more from the camp, the institute and interactions

THANK YOU