- Geopolymer Camp 2014 -

Materials for Development of Containers for Radioactive Waste Management

(July 8, 2014, St.Quentin)

Jae Sol LEE (jaesollee@gmail.com) KONES Corp. (South Korea)

목 차

- Radioactive Waste Management
- Containers for Radioactive Waste Manag ement
- Concrete Containers
- Conclusions

Radioactive Waste Management -ARTE TV (2013)

Accueil > Documentaire

िङिि दि रिक्र र के 1 र र र के 1 र र र के 2 votes र र के 1 र र र के 2 votes

a la carte	6,99€	+ 6€ / DVD gravé > <u>Plus d'infos</u> ACHETER
	2,99 €	LOUER 48H
VOD	6,99 €	ACHETER

La galerie photos Centrales nucléaires, démantèlement impossible ?

Réalisateur : Bernard Nicolas Producteurs : ECLECTIC PRESSE, ARTE France

Sortir progressivement du nucléaire pour choisir des énergies renouvelables, dépasse largement un simple débat électoral. C'est l'avenir de la planète, de ceux qui y vivront après nous, qui va se jouer dans les années qui viennent.

Waste Acceptance Criteria (IAEA)

WAC LINKS/HIERARCHY

Waste form qualification criteria

Formal and administrative requirements Waste acceptance criteria for disposal Long-term & operational safety assessment

Requirements on repository design and operation

Acceptance criteria for transport, storage and conditioning

Sum of Radioactivity Fractions

 $\sum_{i} \frac{A_i}{T_i} < 1$

Where:

 A_i = activity of radionuclide *i* that is present in a package (TBq) T_i = transport security threshold for radionuclide *i* (TBq)

SAMPLE CALCULATION OF A SUM OF RADIOACTIVITY FRACTIONS OF NUCLIDES						
Radionuclide	Package Inventory/ TBq	Transport Security Thres	Contribution to Sum of Fr			
		hold/TBq	actions			
Fe-55	3	8000	0.0004			
Co-60	0.1	0.3	0.3333			
Ni-63	6	600	0.01			
Total (< 1)			0.3437			

Radioactive Waste Packaging (Fra nce)

Packaging Requirements (France)

		LSA	Transport Requirements			
		βγ (Max./Aver.)	α (Max./Aver.)	Surface Conta mination (Bq/cm2)		Contact D ose (mSV/h)
				βγ	α	
VLLW		< 100 / 2	< 10 / 1			
LLW	unsoli dified	< 37,000	∑α < 185 <30 Yrs	< 4	< 0.4	< 2
	solidifi ed	Limit by nucli de	∑α < 3,700			
	combu stible	< 20,000	<50			

Status of LLW Containers for D&D

	Background	Status	Remark	
Korea	• Based on American (W) system (drum)	Concrete box for disposalMetal container for transport	 LLW/ILW repository built Sea transport D&D container to develop 	
Japan	• similar to Korea	D&D waste from JPDR	a dozen containers	
USA	 Private respon. LLW Based on drum D&D waste container (B-25) developed Soft-sided bag for D&D Long-distance (Andrews Response) 		 Long-distance transport (Andrews Repository) disposal in concr ete 	
UK	 BNFL/Nirex system Extensive use of ISO containers 	 ISO containers for Drigg Increasing use of soft bags f or D&D wastes 	 NDA policy to introduce competitive mar ket for various containers for ILW 	
France	Centralized systemDrums/boxes	alized system• 'Aube/Morvillier : • Soft bags for D&D waste• Most container affiliat • Concrete overpack for		
Germa ny	 Konrad repository to be opened 	 Konrad repository to op en 	 14 types of containers 	
Swede n	 American (W) dru m ISO containers 	 Standardized D&D was te containers (4 different t ypes) 	SFR repository extensionSea transport	

Container for LLW Waste Manag ement

TC01 & TC03 Designs

Type IP-2

Contents - Solid LSA-II

Groutable Disposal Container

Max Gross Mass - 35te

Waste Packaging Concept (UK)

Waste Package = Disposal Package in Reusable Transport Containers

- Reusable container to be returned for reuse
- Disposal package to be disposed of permanently in re pository

UK NDA/LLWR Reusable Containe

TC02 Waste Boxes

To minimise the hold up time of the licensed package

Drums in Transport Container

Gyeongju Repository (Korea)

Radioactive Waste Containers in S weden (SFR Repository for LLW)

Waste packaging used for LILW in SFR • 220 litres steel drums

- cubical steel box with side length 1,2 m
- concrete box
 with side length 1,2 m
- concrete container
 (1,3 x 2,3 x 3,3 = 10 m3)
- ISO standard freight container.

Containers for Konrad Repository (Germany)

No.	Type Dimen			ension (mm)		
		L	W	Н	(m3)	
• 1 • 2	 Concrete canister – I Concrete canister – II 	1,060 1,060		1,370 (1) 1,510 (2)	1.2 1.3	
• 3 • 4 • 5	 Ductile Cast Iron (DCIC)-I Ductile Cast Iron (DCIC)-II Ductile Cast Iron (DCIC)-III 	900 1,060 1,000		1,150 1,500 (3) 1,240	0.7 1.3 1.0	
• 6 • 7 • 8 • 9 • 10 • 11	 Steel Container – I Steel Container – II Steel Container – III Steel Container – IV Steel Container – V Steel Container – VI 	1,600 1,600 3,000 3,000 3,200 1,600	1,700 1,700 1,700 1,700 2,000 2,000	1,450 (4) 1,700 1,700 1,450 (4) 1,700 1,700	3.9 4.6 8.7 7.4 10.9 5.4	
(1) H= 1,510 + hook 90 = 1,460 mm						
(2) H = 1,370 + hook 90 = 1,600 mm						
	(3) KfK Type, H= 1,370 mm, Volume	e = 7.2 m3				
	(4) KfK Type, Stacking H= 1,400 m	m, Volume = 7	.14 m3			

B-25 Boxes (North Coast Fabricators, CA)

http://www.northcoastfabricators.com/fabrication/b-25-box

MHF Services

http://www.mhfservices.com/Durable-Packaging.asp

Inter-modals and Sea-lands

ISO Standard Containers

Les conteneurs ISO : deviennent le standard pour les déchets solides LSA

Conteneurs ISO 20' ½ hauteur ou pleine hauteur en tant que:

Colis excepté
 IP-1

Avantage : équivalence réglementaire ISO⇔IP-2, facilité de transport et de manutention, transport multimodal, internationalement reconnu

AREVA TN

AREVA

p.29

Le transport des déchets radioactifs - Journées Techniques SFRP - 1** et 2 Octobre 2013 - UIC Paris-

Soft-Sided Bags for VLLW/LLW

Soft Bags for VLLW/LLW

Andrews Repository (Texas, USA)

Combination of Containers

US Patent

5225114 (1993) Multi-purpose Container for LLW (Chem-Nuclear)

The concrete outer shell 14 is typically made through a precasting process, and is metal reinforced. The concrete may be reinforced with epoxy coated wire mesh or reinforcement bar. The concrete may also have admixed into it during the concrete blending procedure. Such additives may include various high range water reducing agents, or pozzolanic materials such as fly ash and silica tume (= Geopolymer 7). The concrete may also be a reinforced, for instance, with amorphous metal fibers obtained from SOGEFIBRE of France. Such fibers are denerally produced by duenching. louid metal let onto a that is rotating at a high speed.

netal fibers are noncrystalling in structure, and thus bighty corrosion resistant

Concrete Containers (SOGEFIBRE

Sogefibre Concrete Container

2. Functions and applications

Different types of waste packaging methods are used in the CBF-K container:

- bare drums
- bulk heterogeneous solid waste
- cement-solidified liquid or powder waste

 The CBF-K container meets radioactive waste package specifications calling for durable concrete containers

SOGEFIBRE – CBF-K Container

	_			-		
Γ	JOB	TYPE	INCREMENT	REV	DATE	PAGE
Γ	2500	NT	001	0	06/04/2010	4

Comparative Features

Conclusions

Containers for Radioactive Waste Management

- Conventional steel drums may not be adequate performance
- Better designs with new materials may be desirable
- Advanced materials may come up for better performance
- The ISO container as an option
 - Compliance with transport requirements
 - Disposal requirements ? (→ concrete)

Concrete material for disposal container

- Armophous fibre reinforced concrete (Sogefibre, Posco,...)
- Geopolymer (?)