

Are Fireproof Geopolymer-Matrix Based Syntactic Foams Feasible?

Syntactic Foam

Term coined 1955 by Bakelite Company. Material is used in aerospace and submarine applications.

Thomas Scheiblauer

Microspheres

Hollow metal, glass or ceramic microspheres are embedded in metal, polymer or ceramic matrix.

Manufacturers

Eccofloat[®] Syntactic Foam

ROV/AUV/HOV and Oceanic Applications

Pressure at **5 000 m** below sea level = **49.14 MPa** (7 126 psi) Pressure at **10 000 m** below sea level = **98.17 MPa** (14 238 psi) High performance concrete: **50-110 MPa**

Microsphere Materials

5.3 Macroscopic (a) as well as microscopic (b) views of glass microspheres. (Courtesy Trelleborg.)

- Hollow glass microspheres: marine applications
- Plastic microspheres
- Cenospheres: low-density, hollow, free-flowing alumino-silicate microspheres
- Ceramic microspheres: paints and coatings
- **Carbon**: Phenolic microspheres can be carbonized or pitch can be treated and carbonized to produce carbon spheres
- Aluminum and copper/silver microspheres are currently available
- Solid glass microspheres, commonly called glass beads, are widely used as resin extenders

Applications

Le Corbusier, 1931 Villa Savoye 82 Rue de Villiers 78300 Poissy

Today: thermal insulation required!

How to Make a Fire Resistant Geopolymer

Geopolymere Institute, 1997:

Fire Resistant Aluminosilicate Composites Lyon, Balaguru, Foden, Sorathia, Davidovits

"The Geopolymer potassium aluminosilicate resin was prepared by mixing 100 g of an aqueous silica + potassium oxide solution with 135 g of silica powder having SiO_2/AIO_2 in a mole ratio of 27/1."

A/N: potassium waterglass (K_2SiO_3) + silica fume, weight ratio approximately 3:4

Questions

- Are there alcali resistant microspheres and fibers?
- How do the binders mix with microspheres?
- How do fibers influence tensile strength?
- Thermal conductivity?
- Compressive strength?

First experiments with silica fume / pc concrete Vienna, June 2015

DI Martin Murero DI Thomas Scheiblauer DI Peter Sedlak

Electron microscopy and EDX-spectra

0.3

0.50 1.00 1.50

2.00

2.50 3.00

Energy - keV

3.50 4.00

4.50

5.00

5.50

0.3 Ca 3.50 4.00 0.50 1.00 1.50 2.00 2.50 3.00 4.50 5.00 5.50 Energy - keV

Electron microscopy and EDX-spectra

:\daten\Scheiblauer\EX-CEL M1.spc 29-Jun-2015 11:51:21 L Secs : 50

(EDX = Energy-Dispersive X-ray spectroscopy)

Electron microscopy and EDX-spectra

Requirements

- Alkali resistant microspheres with high compressive strength
- Alkali resistant fibers with high tensile strength
- Chloride resistance (with steel)

- Freezing and thawing resistance (necessary air content)
- Optimal microsphere size distribution
- Percentages of fly ash, slag, silica fume
- Slump control