

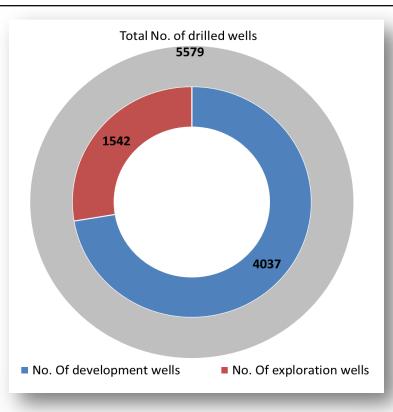
Potential Utilization of Geopolymers for Oil Well Cementing Operations

Dr. Mahmoud Khalifeh

Dept. of Petroleum Engineering University of Stavanger uis.no

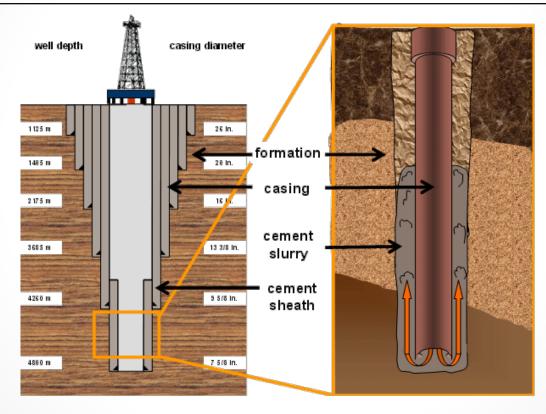
7/7/16

Outlines


- Past, Present, and Future of Oil Wells in Norway
- Geopolymers as an Alternative Material
- Placeability Rheological Determination
- Physical Observation
- Properties of the Geopolymers
- X-ray Crystallography
- Microstructure Characterization
- Long-Term Durability Analysis
- Summary

Materials for Oil Well Cementing

- Two new materials were developed:
 - Aplite-based geopolymers
 - Norite-based geopolymers



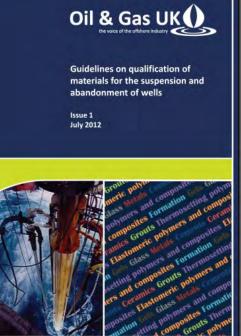
Oil Wells in Norway - Since 1966 until June 2015

Oil Wells

University of Stavanger

Alternative Plugging Materials

- Portland Cement as the Prime Material
 - Concerns regarding Portland cement
 - Shrinkage
 - Possible gas influx (permeability)
 - Instability at high temperatures
 - Instability in corrosive environments
 - Well conditions (rock formation type, thermal cycling, etc.)


Alternative Material, Norsok-D010

- Characteristics of a suitable alternative material:
 - Ensure bonding to steel,
 - Impermeable,
 - Non-shrinking,
 - Able to withstand mechanical loads/impact,
 - Resistance to chemical/substances (H₂S, CO₂ and hydrocarbons),
 - Not harmful to the steel tubulars integrity,
 - Provide long-term integrity (eternal perspective).

University of Stavanger

Alternative Plugging Materials

Туре	Material	Example		
A	Cements / ceramics (setting)	Portland ceramics geopolymers	, phosphate cements, hardeni	
В	Grouts (non-setting)	Sand or a and other n	barite plugs, calcium carbona	
С	Thermosetting polymers and composites	Resins, epoxy, sers, i	the thre reinforcements	
D	Thermoplastic polymers and composites	Polyethylene, polypropylene, polyamid polycarbonate, including fibre reinforce		
E	Elastomeric polymers and composites	Natural rubber, neoprene, nitrile, EPDM, FKM, FFKM, silicone rubber, polyurethane, PUE and swelling rubbers, including fibre reinforcements		
F	Formation	Claystone, shale, salt.		
G	Gels	polymer gels, polysaccharides, starche gels, diesel / clay mixtures	es, silicate-based gels, clay-base	
н	Glass			
I	Metals	Steel, other alloys such as bismuth-bas	sed materials	

Geopolymers

How do I produce the geopolymers?

60

50

40

ΰ

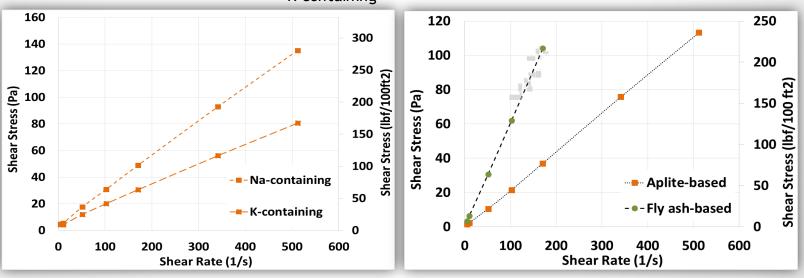
0 00 00 00 Temperature (deg. C

0

Placeability - Consistency

- Reaction
 - Dissolution
 - Coagulation 120 Polycondensation 120 60 100 -----1 100 50 80 ---- 11 Consistency (Bc) 2 -·-12 40 80 Consistency (Bc) 0 0 08 0 08 60 C ----7 --3Temperature de. 30 40 — · · Temp. 20 deg. C 20 -·· Temp. deg. C 20 10 0 20 0 40 60 80 0 60 80 100 120 140 Time (min) 20 40 Time (mins)

Atmospheric consistometer of the aplite-based geopolymers with different mix ratios.


Atmospheric consistometer of the aplite-based geopolymers with different dosages of retarder. 10

RAS

University of Stavanger

Placeability - Viscosity

Non-Newtonian
 Yield stress
 Yield stress
 K-containing
 Fly ash-based
 Higher shear stress

Shear stress vs. shear rate for Na- and K- containing aplite-based geopolymers at ambient condition.

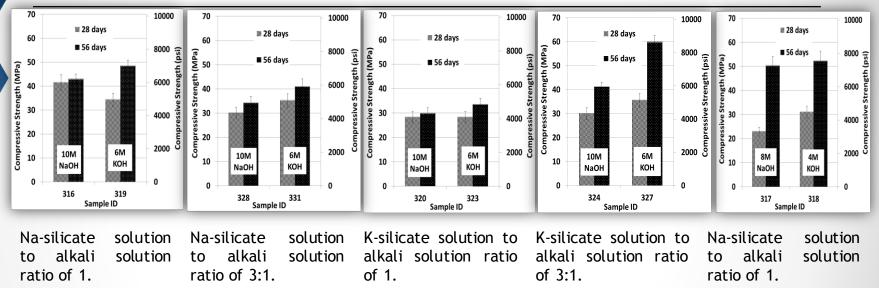
Shear stress vs. shear rate for fly ash- and aplitebased geopolymers at ambient condition.

University of

Stavanger

Properties

Physical Observations

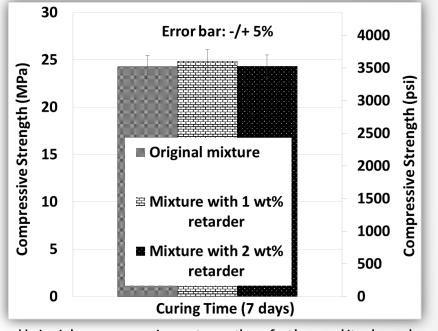

- Color changes
 - Chemical indicator of the geopolymers
- Cracks
 - Water evaporation

(a) cured at ambient pressure and temperature for 7 days,
(b) cured at 87°C and ambient pressure for 7 days, and
(c) cured at 87°C and ambient pressure for 365 days.

University of Stavanger

Properties of the Geopolymers - UCS

- The aplite-based geopolymers cured at ambient pressure and 87°C.
 - 6M KOH
 - K-silicate solution to alkali solution ratio of 3:1.


Properties

Properties of the Geopolymers - UCS

Retarder Effect

- Similar compressive strength
- Dissolution

Uniaxial compressive strength of the aplite-based geopolymers cured at 90°C and 2000 psi.

University of Stavanger

Properties of the Geopolymers - CCM

 Estimated dynamic mechanical properties of the aplite-based geopolymers at 87°C and 1000 psi by using MPro.

Sample	Slurry Density (g/cc)	Poisson's Ratio	Bulk Modulus	Young's Modulus,
			(kpsi) [GPa]	E (kpsi) [GPa]
7	1.90	0.28	746 [5.14]	1063 [7.33]
8	1.93	0.15	404 [2.78]	107 [0.74]
9	1.89	0.28	1057 [7.28]	1371 [9.45]

 Measured dynamic mechanical properties of the aplite-based geopolymers at 90°C and 2000 psi by using triaxial compression cell.

Mix design	Bulk modulus	Young's modulus	Poisson's ratio	Axial creep (%)	Radial creep (%)
	(kpsi [GPa])	(kpsi [GPa])		[t=7021 min]	[t=7021 min]
1	241.0 [1.66]	207.2 [1.43]	0.016	2.09	0.86
2*	222.3 [1.53]	238.0 [1.65]	0.015	2.00	0.88
3	221.2 [1.53]	213.1 [1.47]	0.018	2.23	1.03

*Average values from two tests.

University of

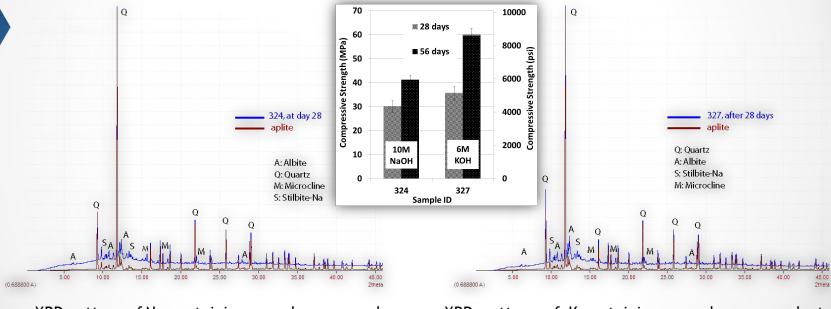
Stavanger

Properties of the Geopolymers

- Ultrasonic Cement Analyzer (UCA)
 - Custom algorithms shall be developed.
- pH measurements
 - Slurry's pH value: 14
 - pH value of the geopolymer: 11.5-12.5
- Shrinkage determination
 - Autogenous shrinkage < 1%
 - Drying shrinkage ≈ 5%
- Permeability measurements
 - 0.007-0.040 micro-Darcy

Additional Studies

- Besides the previously mentioned investigations:
 - Effect of curing temperature:
 - Ambient temperature
 - Elevated temperature
 - Effect of activator:
 - Alkali solution
 - Alkali silicate solution
 - Alkali solution and alkali silicate solution
 - Influence of GGBFS:
 - Early strength development:
 - Amorphous content
 - Calcium and Magnesium content
 - C-S-H and C-A-S-H



University of

Stavanger

X-ray Crystallography of the Geopolymers

• Aplite rock-based geopolymers K-silicate solution to alkali solution ratio of 1.

XRD pattern of Na-containing geopolymer cured at ambient temperature for 28 days.

XRD pattern of K-containing geopolymer cured at ambient temperature for 28 days.

left) BSE

elemental EDX maps for the most

elements

geopolymer: Si, Al, O, Ca, Fe, Na,

(Top

abundant

K, and Mg.

erties X-Ra

Microstructure

ty Sum<u>mar</u>

Microstructure Analysis of the Geopolymers

Aplite rock-based geopolymers

image

in

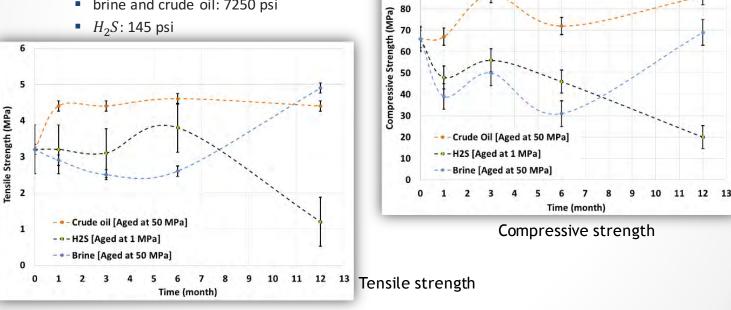
and

the

Si A 0 Ca Fe Mg

100

90


Durability

University of

Stavanger

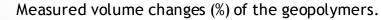
Long-Term Durability of the Geopolymers

- Aplite rock-based geopolymers
 - Ageing temperature: 100°C
 - Ageing pressure:
 - brine and crude oil: 7250 psi

University of

Stavanger

Durability


Long-Term Durability of the Geopolymers

- Aplite rock-based geopolymers
 - Ageing temperature: 100°C
 - Ageing pressure:
 - brine and crude oil: 7250 psi
 - *H*₂*S*: 145 psi

	Ageing Pressure (MPa)	1-month	3-months	6-months	12-months
Crude oil	50	-0.4±0.2	0.0±0.3	-0.9±0.1	-0.3±0.1
Brine	50	4.3±0.2	3.9±0.4	3.6±0.2	3.0±0.7
H ₂ S	1	3.1±2.0	1.1±1.0	-7.0±2.0	-10.5±3.0

Measured weight changes (%) of the geopolymers.

	Ageing Pressure (MPa)	1-month	3-months	6-months	12-months
Crude oil	50	-0.1±0.6	-0.4±0.7	*	-1.0±1.5
Brine	50	7.0±1.0	5.0±2.0	6.5±1.5	3.5±1.5
H₂S	1	5.4±1.0	11.0±4.0	4.0±2.0	0.9±0.6

University of

Stavanger

Summary

- The particle size of the source material significantly affects the reactivity and properties of the geopolymers.
- Na-containing geopolymeric systems show a markedly higher viscosity than potassium-containing systems.
- The setting time could effectively be adjusted by the addition of retarders.
- A lower concentration of alkali solution can result in a higher strength for geopolymer than a higher concentration of alkali solution when combinations of Na- and K- containing systems are used as activators.

Summarv

Summary

- A higher curing temperature of the mixes with higher concentration of alkali solution may activate a consecutive reaction, which could reduce the strength of geopolymers.
- The X-ray patterns indicated the formation of the zeolite phase for potassium-containing systems.
- Long-term durability experiments show a further reaction after six months of curing takes place and increases the compressive strength and tensile strength of the aplite-based geopolymers that were exposed to crude oil and brine.

Summary

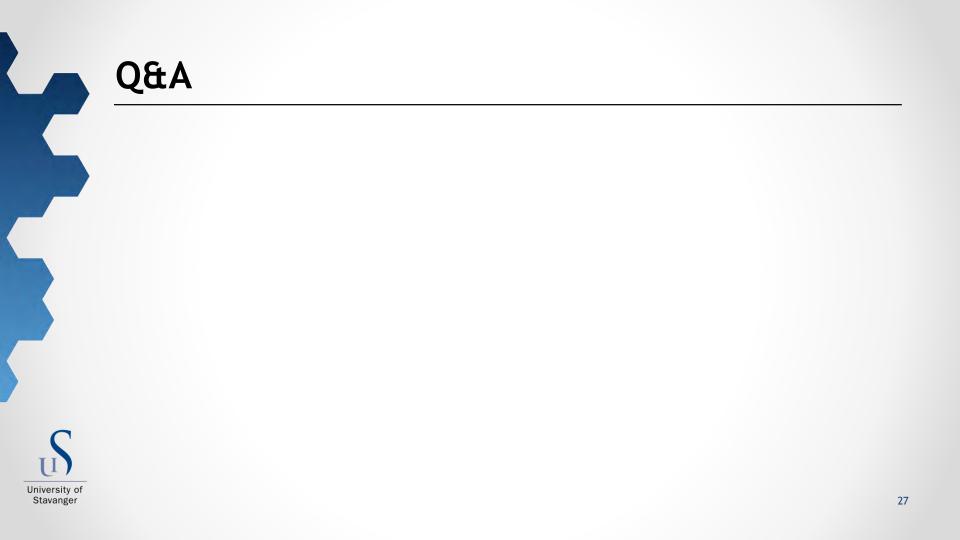
- The long-term exposure of geopolymers to H₂S deteriorates both the compressive strength and tensile strength of the geopolymers. After six months of curing, as a result of the consecutive reaction, phase(s) is formed which increases the compressive and tensile strengths while interacting with H₂S.
- Low permeability, favorable compressive strength, high pH value, and low shrinkage factor of geopolymers are key factors that could indicate a bright future for the geopolymer technology.

Summarv

List of Publications

- Khalifeh, M., Hodne, H., Saasen, A., and Vrålstad, T. 2013. Techniques and materials for North Sea plug and abandonment operations. Paper OTC-23915 presented at the Offshore Technology Conference, 6-9 May, Houston, Texas, USA.
- Khalifeh, M., Saasen, A., Vrålstad, T., and Hodne, H. 2014. Potential utilization of geopolymers in plug and abandonment operations. Paper SPE-169231 presented at the SPE Bergen One Day Seminar held in Grieghallen, Bergen, Norway, 2 April 2014.
- Khalifeh, M., Saasen, A., Vrålstad, T., and Hodne, H. 2014. Potential utilization of class C fly ash-based geopolymer in oil well cementing operations. Journal of Cement and Concrete Composites 53 (2014) 10-17.
- Khalifeh, M., Saasen A., Vrålstad, T., Larsen, H.B., and Hodne, H. 2015. Experimental study on the synthesis and characterization of aplite rock-based geopolymers. Journal of Sustainable Cement-Based Materials.
- Khalifeh, M., Saasen, A., Vrålstad, T., Larsen, H.B., Hodne, H. 2015. Cap rock restoration in plug and abandonment operations; possible utilization of aplite-based geopolymers for permanent zonal isolation and well plugging. Paper SPE-17547-MS presented at the SPE Offshore Europe and Conference and Exhibition held in Aberdeen, Scotland, UK, 8-11 September 2015.
- Khalifeh, M., Saasen, A., Korsnes, R.I., and Hodne, H. 2015. Cap rock restoration in plug and abandonment operations; possible utilization of rock-based geopolymers for permanent zonal isolation and well plugging. Paper IPTC-18454-MS presented at the International Petroleum Technology Conference held in Doha, Qatar, 7-9 December 2015.
- Khalifeh, M., Saasen, A., Larsen, H.B., and Hodne, H. Submitted. Experimental study on the formation (development) and characterization of norite-based geopolymer produced from an ilmenite mine waste stream, polymerized with NaOH and KOH solutions. Submitted to a scientific journal in June 2015.
- University of Stavanger

Khalifeh, M., Todorovic, J., Vrålstad, T., Saasen, A., and Hodne, H. Submitted. Long-term durability of rock-based geopolymers aged at downhole conditions for oil well cementing operations. Journal of Sustainable Cement-Based Materials, 2016.



Acknowledgement

I gratefully acknowledge the Research Council of Norway, ConocoPhillips, Det norske oljeselskap, Statoil, Wintershall, and Lundin Norway AS for financing the work through the research centre DrillWell - Drilling and Well Centre for Improved Recovery, a research cooperation between IRIS, NTNU, SINTEF, and UiS.

A special thanks to European Synchrotron Radiation Facility (ESRF) for provision of synchrotron beam time and technical assistance from the SNBL-consortium.

