Development of 3D-printed geopolymer cement for sustainable construction

Biranchi Panda PhD Research student Singapore Centre for 3D printing

Consolidating Capabilities in 3D Printing

Singapore Centre for 3D Printing

Future of Manufacturing

- Modeling & Prototyping
- Sustainable
 Manufacturing
- Precision
 Engineering

Aerospace & Defence

- Lightweight UAVs
- Parts on demand
- Part certification for Quality System Management

Building & Construction

- New printable materials
- Modular systems for multiple build materials
- Novel robotic 3D printers for construction

Marine & Offshore

- Novel process for large joints
- Printing of high aspect ratio structures
- Large scale laser cladding for component repair

Bio & Food Printing

- Bioprinting bionic constructs, retina tissue, organs
- Medical Implants
- Food printing meat, chocolate, etc.

NAMIC @ NTU

Innovation Cluster to perform *translation of upstream research* into applications for commercialization, and to *collaborate with key partners* for industry development

Content:

Part 1

Challenges for sustainable construction

- Design and architecture
- Sustainability
- Productivity

Part 2

Opportunities of 3D printing and Geo-Polymer

- Introduction & Printer
- Geo-Polymer
- Benchmarking properties

Part 1: Design and architecture

Pantheon Rome (126 AC) Example of superb architecture and a sustainable concrete structure **Philips pavilion** Example of free form architectural design at the World's fair 1955 in Brussels

Sustainability:

Productivity:

Health The preparation of rebar is labour intensive and a major cause of illness.

E MAAT

Part 2: Digital manufacturing via 3D printing

Part 2: Introduction & Printer

- ✓ Design and architecture
- ✓ Sustainability
- ✓ Productivity

Part 2: Geopolymer

Definition: Geopolymer is an inorganic alumino-silicate polymer synthesized from alkaline activation of various aluminosilicate materials of geological origin or by-product materials like fly ash, metakaolin and blast-furnace slag.

Goal: Development of 3D-printed geopolymer binder for Sustainable Construction

Properties		Test	Targeted parameter		Remark
Fresh properties of printed concrete	Extrudability/printability	Nozzle	Ability to print bead layers without any surface breakage		Related to workability
	Workability	Slump flow	Flow without segregation		Related to matrix design
		Rheological test	0.55KPa for initial shear strength		
	Open time	Vicat apparatus	100 minutes		Ending of open time: shear stress increased by 0.3MPa in comparison with initial value
		Shear stress changed with time			
	Buildability	No of layers could be built	Ability to print multiple bead layers without any collapse		Depends on workability and open time
Curing dynamics	Curing test	Need to develop*	Hardening behaviors of materials with time		Influence the hardening behavior of concrete
Hardened properties of printed concrete	Compressive stress	Direct compressive test	As per types of structure /structures need		Depends on testing direction, e.g., printing surface, cut surface, side surface
	Flexural stress	Four point bending test			
	Tensile bond stress between layers	Direct tensile test	Printing gap	Tensile bond stress	Reduce with increased printing gap
			8 hours	0.8MPa	
			3 hours	1.0MPa	
			1 hour	1.2 MPa	
			15 min	1.5MPa	
	Void structure between filaments	Image analysis for large voids (0.2-4mm)	4.8% for poorly printed		Less voids less permeable
			1.0% for well printed		

Rheology of Fly-Ash/Slag-Based Geopolymer Concrete

Run	Slag/Binder	Alkaline/binder	Sodium silicate/NaOH ratio
0	10	35	1
1	10	35	1.5
2	10	35	2
3	20	35	2
4	20	40	2
5	20	45	2
6	30	35	2

Pump

Rheometer

Up and down curve of Run 2

Robotic Printer

Up and down curve of Run 5

Up and down curve

Conclusion

- Increase of GGBFS in the fly ash based geopolymer mixture reduces the workability and setting time. Slump of concrete and flow of mortar decreased with the increase of slag.
- Rheological parameters yield stress is more sensitive to changes in the molar strength of the NaOH solution and is comparatively less sensitive to the quantity of the sodium silicate solution in the mixture. Plastic viscosity, on the other hand, is sensitive to both the molar strength and the quantity of the sodium silicate solution in the mixture

References

- Davidovits J. Geopolymer chemistry and application. 2nd ed. Saint-Quentin (France): Institut Géopolymère; 2008
- Nath, P. and Sarker, P.K., 2014. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. *Construction and Building Materials*, *66*, pp.163-171.
- Laskar, Aminul Islam, and Rajan Bhattacharjee. "Rheology of Fly-Ash-Based Geopolymer Concrete." *ACI Materials Journal* 108, no. 5 (2011).
- <u>http://www.3ders.org/</u>, <u>http://3dprintingindustry.com/</u>

