The direct characterization of the precursor colloidal phases in applications for sol-gel and mineral systems

Tomasz M. Stawski

stawski@gfz-potsdam.de

Rogier Besselink

Helmholtz Centre Potsdam HELMHOLTZ | ASSOCIATION

ResearchGate

Crystallisation from supersaturated solutions:

Sol-gel process:

(1) < 1 nm

Casey, *Chem. Rev.* 2006, 106, 1-16. Li et al., *J. Cryst. Growth* 2005, 279, 508-520. Panias et al. *Hydrometallurgy* 2001, 59, 15-29.

In situ and time-resolved characterization

In situ scattering methods (SAXS, WAXS, total scattering)

Scattering methods

Pauw, J. Phys.: Condens. Matter 2013, 25, 383201

Scattering methods

Scattering methods

In situ scattering methods

Scattering methods: gel formation

Besselink et al. J. Colloid Inter. 2013, 404, 24-35.

Scattering methods: drying

In situ scattering methods

Scattering methods: drying

Scattering methods: internal disorder

Stawski et al. Nature Commun. 2016, 7, 11177.

Stawski & Besselink in prep. 2016

Scattering methods: internal disorder

CaSO₄ nanophase:

Liquid-cell in situ TEM

JEOL 2200 FS STEM/TEM

Conclusions

- Colloid length-scales properties are crucial for understanding of the mechanisms of materials formation.
- Since colloids interact with the surrounding liquid medium, they should be characterised as in situ as possible.

Acknowledgments

Thank you for your attention!

Micellar aggregates

Micellar aggregates

atomic structure	Precursors: Dissolved species		Liquid-liquid, liquid-solid interface: Formation of clusters		Spectroscopy Modelling	
nanostructure	ucture			Self-assembly coalescence network formation Others		
microstructure	Solid p Amorpl Crysta	oroducts: hous solids Iline solids	Solie inte Ne form	d-solid erface twork nation	EM Spectroscopy Diffraction	