The Geopolymer Route to High Tech Ceramics

W. M. Kriven

Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL

Supported by US Air Force Office of Scientific Research, Army Research Office, US Army Corps of Engineers and Dow Chemical Company

Contributors

- M. Gordon
- J. L. Bell
- P.E. Driemeyer
- R. P. Haggerty
- S. Mallicoat
- N. Xie
- D. R. Lowry
- E. Rill
- P. Duxson
- J. Provis
- Un Heo
- Dr. Pankaj Sarin
- B. Glad

- S. S. Musil
- Shinhu Co
- K. Sankar
- P. F. Keane
- Daniel Ribero
- Daniel Roper
- Eli Koehler
- Dr. Ruy Sa Ribiero
- Marilene Sa Ribiero
- Dr. A. Bhuiya
- Dr. Qun Yang
- Brian Munoz

Outline

- Composition and starting materials
- Microstructure
- Processing route to ceramics
 - Oxides with tailorable CTE's
 - Non-oxides nanocrystalline (SiC, Si₃N₄, SiAlON's)

"Geopolymer-based Composites," W. M. Kriven, in Vol. 5, <u>Ceramics and Carbon</u> <u>Matrix Composites</u>, edited by Marina Ruggles-Wrenn. Part of an 8 volume set of books entitled <u>Comprehensive Composite Materials II</u>, Peter Beaumont and Carl Zweben, Co-editors-in-chief. Published by Elsevier, Oxford, UK, in press (2017)

Terminology

The term "geopolymer" was introduced by Joseph Davidovits to describe alkali aluminosilicate binders formed via the addition of aluminosilicate materials to alkaline silicate solution

- J. Davidovits, "Mineral Polymers and Methods of Making Them" U.S.Patent 4,349,386, September 14, (1982)
- J. Davidovits, "Geopolymer Chemistry and Properties"; pp.25-48 in Geopolymer'88 First European Conference on Soft Mineralogy, Vol.1 Edited by J. Davidovits and J. Orlinski. Geopolymer Institute and Technical University, Compiegne, France, (1988)
- J. Davidovits, "Geopolymers Inorganic Polymeric New Materials,"

J. Therm. Anal. 37 1633-56 (1991)

J. Davidovits, <u>Geopolymer Chemistry and Applications</u>, 4th Edition (2015), published by the Geopolymer Institute, St. Quentin, France

Geopolymer Institute - <u>www.geopolymer.org</u>

Geopolymers (Polysialates)

- Are a type of chemically bonded ceramics of chemical formula M₂O•Al₂O₃•4SiO₂•11H₂O
- Refractory inorganic polymers formed from both aluminum and silicon sources containing AlO₄⁻ and SiO₄ tetrahedral units, under highly alkaline conditions (NaOH, KOH, CsOH) at room temperature
- They are a rigid, hydrated, alumino-silicate solid containing group I, charge-balancing cations
- They result in an amorphous, nano-particulate, nanoporous, impervious, acid-resistant, polymeric structure
- Metastable sodalite zeolite (when Na-based)

Geopolymer Composition

5Si⁺⁴O₂

 $M_{2}^{+1}O \bullet Al_{2}^{+3}O_{3} \bullet 4Si^{+4}O_{2} \bullet 11H_{2}O_{3}$

Metakaolin clay

 $M_{2}^{+1}O \bullet 2Si^{+4}O_{2} \bullet 11H_{2}O$

"waterglass" or metasilicate solution

Alkali Activated Cements

Geopolymers are a potential partial solution to global warming!

- The manufacture of 1 ton of Portland cement liberates ~1 ton of CO₂
- Whereas the manufacture of 1 ton of geopolymers liberates ~0.25 tons of CO₂

Comparison of OPC and Geopolymer (GPC) Composites

<u>Property</u>	Portland Cement	<u>Geopolymers</u>
Compressive strength (MPa)	60	100
Flexure strength (MPa)	5-6	10-15
Density (g/cc)	2.7	1.4
Setting time (days)	28	1

Synthesis of Geopolymer

Raw Materials

- Slag (in the former USSR)
- Fly ash (Australia)
- Clays e.g. metakaolin (France, USA)
- Halloysite (New Zealand)
- Plasma incinerated utility waste (black glass) (UK)
- Recycled waste glass powder (cullet)
- Heated (1200 °C) basalt from volcanic tufts
- Calcined rice husks, bamboo leaves, elephant grass

How can a geopolymer form at RT?

Al(VI) in crystalline $(Al_2O_3 \bullet 2SiO_2 \bullet 2H_2O)$ Al(V) in amorphous Al₂O₃•2SiO₂ forms highly strained molecule AIO_4^- tetrahedra and SiO_2 . AIO_4^- oligomers in solution

Dissolve at high pH

How to make a geopolymer

The term "geopolymer" was introduced by Joseph Davidovits to describe alkali aluminosilicate binders formed via the addition of aluminosilicate materials to alkaline silicate solution

mix

Geopolymers can be formed in plastic molds and colored

Microstructure

XRD Characteristic of Geopolymer

NMR gives great local information such as the coordination state of Al, which is predominantly 4coordinated in geopolymers Provide the second seco

Typical GP XRD pattern shows a broad peak shift from metakaolin (a) to the resultant geopolymer (b), but says little about geopolymer structure other than it is amorphous

Davidovits, J., *Geopolymers - inorganic polymeric new materials.* Journal of Thermal Analysis, 1991. **37**(8): p. 1633-1656. M. Gordon, J. L. Bell and W. M. Kriven, "Comparison of naturally synthetically derived, potassium based geopolymers"; pp. 95-10-Ceramic Transactions, Vol. 165, (2004.)

Geopolymer Structure

- X-ray amorphous
- Al is integrated into a network of (IV) AlO₄⁻ and SiO₄, such that the negative charge on AlO₄⁻ is balanced by the alkali cation

Davidovits, J. Journal of Thermal Analysis **1991**, *37*, 1633 Barbosa, V.F.F. and K.J.D. MacKenzie, Materials Research Bulletin, 2003. **38**(2): p. 319-331 Barbosa, V.F.F., K.J.D. MacKenzie, and C. Thaumaturgo, International Journal of Inorganic Materials, 2000. **2**(4): p. 319-331

SEM micrograph of a fully reacted region of polysialate.

TEM of crushed Na-geopolymer

Microstructure of Precipitates

High resolution transmission electron microscopy (HRTEM) results for (a) NaGP, (b) KGP, and (c) CsGP.

High angle, annular dark field TEM (HAADF)

Nanoporosity in kaolin-based GP

Average logarithmic pore radius : 0.4362 nm

Average pore radius : 3.3711 nm

Porosity over weight : $0.3165 \text{ cm}^3/\text{g}$

Porosity over volume : 0.4106 cm³/cm³

Meso- and macro-pore surface over weight : $190.5778 \text{ m}^2/\text{g}$ Meso- and macro-pore surface over volume : $247.2794 \text{ m}^2/\text{cm}^3$ Total pore surface over weight : $274.6912 \text{ m}^2/\text{g}$ Total pore surface over volume : $356.4186 \text{ m}^2/\text{cm}^3$ Density of solid phase: 2.0481 g/cm^3

Nanoporosity in synthetic-based GP = 0.8 nm

Alkali cationNaKCsDensities (g/cm^3) 1.511.471.84

Densities of single phase geopolymer using different Group I cations

Porosity in geopolymers:

- H₂O₂ (45 μm)
- Canola oil (100's μ m)
- Kitty litter (bentonite)
- Alkoxy silanes (75 vol % at 1 μm pore size)*
- Excess H₂O (reduces strength)

* "Geopolymer with Hydrogel Characteristics via Silane Coupling Agent Additives,"
 B. E. Glad and W. M. Kriven, J. Am. Cer. Soc., 97 [1] 295 - 304 (2014).

Calcination for Filtration

- Calcination (800 °C, 4h) to remove hydrophobic material under inert conditions
- Glassy structure shows substantial morphological change
 - Diffraction spectrum changes
 - Synchrotron data shows formation of cubic SiC

Premix peak at 24 2- Θ moves to 14 2- Θ Upon calcination. SiC is a trace phase

Noticeably increased porosity and slightly wider pores implies removal of film

No film is visible for even a 2.67 mJ S E DIDE/mol GP sample after calcination 24 S E

Pair Distribution Function (PDF) Work

- Novel materials are often disordered/complex on a local level
- PDF method allow us to sit on an atom and look at our neighborhood
- PDF procedure:
 - 1. Collect total scattering data (X-ray or neutron) for material
 - 2. Subtract background and apply appropriate corrections to raw data
 - 3. This gives us the structure function, S(Q)
 - 4. Apply Fourier transform to get the PDF, G(r)

$$S(Q) = \frac{I_{el,coh}(Q) + \left[\left\langle f(Q) \right\rangle^2 - \left\langle f(Q)^2 \right\rangle\right]}{\left\langle f(Q) \right\rangle^2}$$

$$G(r) = \frac{2}{\pi} \int_0^\infty Q[S(Q) - 1] \sin(Qr) dQ$$

Pollucite (CsSi₂AlO₆) Analysis and Modeling

Pollucite (CsSi₂AlO₆) Analysis and Modeling

Subtraction of RT experimental geopolymer PDF from heated PDF patterns

Na based geopolymer – Ordering in Na-GP

Geopolymer – PDF as function of Alkali Choice

r (Å)

Geopolymer – PDF as function of water for K-GP

WATER REMOVAL

^{*}Rahier, H., B. VanMele, and J. Wastiels, Low-temperature synthesized aluminosilicate glasses: Part II: Rheological transformations during low-temperature cure and high-temperature properties of a model compound. Journal of Materials Science, 1996. **31** 80-85, (1996)

M.SE

Dehydration Cracking

- Geopolymers undergo shrinkage upon heating due to water loss¹
 - RT to 100°C: Dehydration of physically bonded (free) water
 - 100 to 300°C: Dehydration of chemically bonded (interstitial) water
 - >300°C: Dehydroxylation of OH groups
- Dehydration shrinkage causes cracking of monolithic geopolymer
- Reinforcing or filler phases can be utilized to maintain structural integrity during shrinkage by crack-bridging and offering pathways for more graceful dehydration

Reinforcements

- Chamotte/mullite particulates, granite, dolomite sediment
- Chopped fibers
 - Alumina (13 μ m D x 100 μ m long)
 - Basalt (50 μ m D x $\frac{1}{4}$ ", $\frac{1}{2}$ " long)
 - Carbon (7 μ m D x 60 or 100 μ m long)
- Alumina platelets (D = 50 μ m)
- Woven fabric
 - Carbon fiber
 - Nextel 610 alumina, 720 mullite + alumina, 550 mullite
 - Basalt weaves and felts
- Mullite single crystal fibers (Moscow)
- Polymeric chopped fibers polyproplyene (1/2", 1", 2")
- **Biological fibers**
 - Corn husk fiber bundles Cordgrass (Illinois)
 - Jute (China, India)
- Abaca (Manila hemp) and Hemp
- Fique (Colombia)
 Malva (Amazon) – Cork
 - Curaua (Amaon)

Alumina Platelets

- Microgrit[®] WCA 50
 - Manufactured by Micro Abrasives Corp., Westfield, Massachusetts, USA
 - Aspect ratio of 5:1
- Diameter:
 - 6% less than 16.12 μm
 - 50% between 42.81-52.50 μ m
 - $\,$ 3% greater than 102.00 μm
- Miscellaneous
 - Purity: 99.20% Al2O3
 - Density: 3.95 g/cm³
 - http://www.microgrit.com/microgrit%20wca.html

Residual Strength after Heat Treatment

• Competing effects on heating

- Elevated diffusion promotes dehydration crack filling, densification
- Differential thermal shrinkage creates new, larger cracks and residual strains
- No apparent leucite transition weakening

Strength vs Temperature

- In-situ strength remained greater than 5MPa until over 1300°C
- Samples at 900°C deformed plastically

Strength by Fiber Weight Percent

- Composite strength increases rapidly with increasing fiber weight percent
- Modest strength increase for ½ inch long fibers compared to ¼ inch long fibers for the same weight percent

Thermal shock structural materials for VLO runway

Geopolymer composite pellets of 2 inches diameter, after thermal shock for several minutes with an oxy-acetylene torch

BENCHMARK STRUCTURAL PROPERTIES of GP COMPOSITES

<u>Material</u>

- KGP-chamotte particulate
- KGP-chopped basalt $\frac{1}{2}$ " $\phi = 13 \ \mu m$ $\frac{1}{2}$ " $\phi = 13 \ \mu m$
- Chopped Al_2O_3 fiber CsGP ϕ = 3 μ m
- Chopped C fiber 60 μ m ϕ =7 μ m
- Nextel 610 weave
- Nextel 720 weave
- Basalt plain weave
- Nextel 610 weave in KGP
- Nextel 720 weave in KGP
- Plain basalt weave in KGP
- Nextel 610/monazite in alumina

Flexure strength (MPa)

- 2.1 15.3 for 50 wt%
- 1.7 ____ 19.5 for 10 wt%
- 2.2 ____ 27 for 10 wt%
- 10 ____ 20 for 20 wt%
- 8.8 14.1 for max loading
- 8.7 50 for 33 vol%
- 8.7 ____ 40 for 27.3 vol %
- 4.5 41.38 for 30 vol%

Tensile strength (MPa)

- 2.5 ____ 205
- 2.5 → 125
- 1.2 ---- 38
- 0.25 → 117

Processing route to ceramics - Oxides with tailorable CTE's

Geopolymers as a processing route to aluminosilicate oxides

Sodium geopolymer crystallizes into nepheline (NaAlSi₂O₆), on heating at 750°C

Potassium geopolymer crystallizes into leucite (KAlSi₂O₆), on heating at 950°C

Cesium geopolymer crystallizes into pollucite (CsAlSi $_2O_6$) on heating at 1100 °C.

Phase Diagram: Na

"System Na₂O-Al₂O₃-SiO₂; isofracts," J. F. Schairer and N. L. Bowen, *Am. J. Sci.*, **254** [3] 129-195 (1956).

"System $Na_2O-Al_2O_3$ -SiO₂; composite," E. F. Osborn and A. Muan, revised and redrawn, "Phase Equilibrium Diagrams of Oxide Systems," Plate 4, published by the American Ceramic Society and the Edward Orton, Jr., Ceramic Foundation, 1960.

Phase Diagrams: K

- Leucite (KAlSi₂O₆)
 - Refractory ($T_m \simeq 1693^{\circ}C$)
 - High thermal expansion (15.1 31 x 10⁻⁶ °K⁻¹)
 - High fracture toughness
 - Useful as a cermet due to high thermal expansion
 - Used widely in dentistry
 - Potential as a thermal barrier coating or ceramic matrix composite
 - Leucite crystals enhance the toughness of glass ceramics

"System $K_2O-Al_2O_3$ -SiO₂; composite," E. F. Osborn and A. Muan, revised and redrawn Phase Equilibrium Diagrams of Oxide Systems, Plate 5, published by the American Ceramic Society and the Edward Orton, Jr., Ceramic Foundation, 1960.

Phase Diagrams: Cs

- Pollucite (CsAlSi₂O₆)
 - Very refractory ($T_m \sim 1940^{\circ}C$)
 - Exceptional creep resistance comparable to YAG
 - Low thermal expansion (0.45% from 25 1000°C) or (1.2 3.3 x 10⁻⁶ °K⁻¹)
 - Relatively low density (2.9 g/cm³)
 - High thermal shock resistance
 - Useful for ceramic matrix composites and thermal barrier coatings

"System $Cs_2O-SiO_2-Al_2O_3$. Calculated subsolidus at about 877°C," T. B. Lindemer, T. M. Besmann, and C. E. Johnson, *J. Nucl. Mater.*, **100** [1-3] 176-226 (1981).

Tailorable thermal expansion ceramics

- NaGP has CTE = 50 x 10⁻⁶ °C⁻¹
- KGP has CTE = 26 x 10⁻⁶ °C⁻¹
- Cs has CTE = $0.45 \times 10^{-6} \circ C^{-1}$
- Li, Rb and mixtures of Group I ions enable variation of CTE in crystallized geopolymer between 0.45 x 10 ⁻⁶ C⁻¹ to ~50 x 10⁻⁶ C⁻¹

Processing route to ceramics – carbothermal reduction and carbothermal nitridization of geopolymers

Acheson Process to make SiC

Microstructure of Precipitates

High resolution transmission electron microscopy (HRTEM) results for (a) NaGP, (b) KGP, and (c) CsGP.

Hypothesis

It is well known that:

sodium geopolymer crystallizes into nepheline (NaAlSi₂O₆), on heating at 900-1100 °C,

potassium geopolymer crystallizes into leucite (KAlSi₂O₆), on heating at 900-1200 °C,

cesium geopolymer crystallizes into pollucite (CsAlSi₂O₆) on heating at 900 °C.

So, one question arises:

Can we convert a geopolymer to its carbide and nitride analogues by carbothermal reduction using it a precursor?

This study investigated the feasibility of producing SiC, Si_3N_4 and SiAlON ceramics by *carbothermal reduction* under flowing Ar or *carbothermal nitridizationation* under flowing N₂ gas.

Experimental procedures Route-1

Results

X-ray diffraction patterns of NaGP+18C precursor after being carbothermally reacted between the temperature range of 1400°C-1600°C in argon.

Mas E Illinois 3.2 Phase analysis and microstructural transformation of products made from GP+18C by carbothermal reduction under Ar

1600°C

SEM micrographs of NaGP+18C precursor after being carbothermally reacted at between the temperature range of 1400°C-1600°C in argon.

Carbothermal reduction of NaGP under Ar producing globular or elongated grains

SiC Nano particles

Phase analysis and microstructural transformation of products made from GP+18C by carbothermal reduction for 2h under Ar

Rietveld refinement results of products after being argon-fired in tube furnace.

Heat Treatment in N₂

NaGP+18C heat at 1400-1600 °C in N₂

1600°C

SEM micrographs of NaGP+18C precursor after being carbothermally reacted at between the temperature range of 1400°C-1600°C in nitrogen.

1: α -Si₃N₄

2: hex-AlN

Phase analysis and microstructural transformation of products made from GP+18C by carbothermal reduction under N_2

1600°C

SEM micrographs of KGP+18C precursor after being carbothermally reacted at between the temperature range of 1400°C-1600°C in nitrogen.

KGP-18C-N₂-1600°C

1: β -Si₃N₄, needles or globular 2: α -Si₃N₄, needles or globular

 β -Si₃N₄

Coexistence of α - and β -Si₃N₄ in needle, interfacial defects

The hardly observed β -Si₃N₄ in NaGP-18C-N₂-1600°C may be a small region located near the well developed α -Si₃N₄ needles

Phase analysis and microstructural transformation of products made from GP+18C by carbothermal reduction under N_2

Rietveld refinement results of products from GP+18C after being nitrogen-fired in tube furnace.

3.2 XRD pattern and SEM migrograph of products made from GP+9C by carbothermal reduction and nitridation

X-ray diffraction patterns of NaGP+9C precursor after being carbothermally reacted between the temperature range of 1400°C-1600°C in nitrogen

SEM micrographs of NaGP+9C precursor after being carbothermally reacted between the temperature range of 1400°C-1600°C in nitrogen.

1600°C

1500°C

SEM micrographs of CsGP+9C precursor after being carbothermally reacted between the temperature range of 1400°C-1600°C in nitrogen.

3.4 Phase analysis and microstructural transformation of products made from GP+9C by carbothermal reduction under N_2

Rietveld refinement results of products from GP+9C after being nitrogen-fired in a tube furnace.

CONCLUSIONS OF CARBOTHERMAL REDUCTION/NITRIDIZATION of GPs

- In this study, higher yield (over 95 %) of silicon carbide was synthesized from sodium precursor with 18C
- By carbothermal reduction, SiC, $(\alpha + \beta)$ Si₃N₄ and SiAlON ceramic powders can be cost effectively synthesized from geopolymer precursors
- NaGP in both carbon compositions has an advantage over the KGP and CsGP in conversion of its carbide analogues as well as its low-cost
- By focusing on the NaGP and KGP precursors, useful structural ceramics and ceramic composites were made by an inexpensive geopolymer route

Summary of Topics Covered

- Composition and starting materials
- Microstructure
- Processing route to ceramics
 - Oxides with tailorable CTE's
 - Non-oxides nanocrystalline (SiC, Si₃N₄, SiAlON's)

"Geopolymer-based Composites," W. M. Kriven, in Vol. 5, <u>Ceramics and Carbon</u> <u>Matrix Composites</u>, edited by Marina Ruggles-Wrenn. Part of an 8 volume set of books entitled <u>Comprehensive Composite Materials II</u>, Peter Beaumont and Carl Zweben, Co-editors-in-chief. Published by Elsevier, Oxford, UK, in press (2017)

Potential Applications of Geopolymers

- Low CO₂ producing cements and concretes
- Fire resistant coatings
- Low level radioactive waste encapsulation
- 3D printed rapid-prototyping molds
- Porous water purification filters
- Corrosion resistant coatings
- Coatings on wood, steel, other metals
- Refractory adhesives
- Porous insulators and refractories
- Alternative processing routes to isochemical ceramics
- High temperature resistant airplane runways (1200 °C) for VLOs
- Fuel cells alternative to PEMS devices
- Solar panel substrates
- Bush fire breaker panels
- Acoustic meta-materials

<u>42nd International Conference and Expo on Advanced</u> <u>Ceramics and Composites (ICACC'18)</u>

Symposium on Geopolymers (17 conference proceedings to date)

January 21 – 26 (2018) Daytona Beach, Fla. USA

Geopolymers II:

Versatile Materials Offering High Performance and Low Emissions

An ECI Continuing Series

May 27-June 1, 2018 Hotel Dos Templarios Tomar, Portugal

> Mas E Illinois