Natural Fiber Reinforced Geopolymer Composites

W. M. Kriven

Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL

Supported by US Air Force Office of Scientific Research, Army Research Office, US Army Corps of Engineers and Dow Chemical Company

Contributors

- M. Gordon
- J. L. Bell
- P.E. Driemeyer
- R. P. Haggerty
- S. Mallicoat
- N. Xie
- D. R. Lowry
- E. Rill
- P. Duxson
- J. Provis
- Un Heo
- Dr. Pankaj Sarin
- B. Glad

- S. S. Musil
- Shinhu Co
- K. Sankar
- P. F. Keane
- Daniel Ribero
- Daniel Roper
- Eli Koehler
- Dr. Ruy Sa Ribiero
- Marilene Sa Ribiero
- Dr. A. Bhuiya
- Dr. Qun Yang
- Brian Munoz

Keramos Mug Drop Competition - ACERS 2005

Testing for leaks

The 5 storey plummet

WATER REMOVAL

^{*}Rahier, H., B. VanMele, and J. Wastiels, Low-temperature synthesized aluminosilicate glasses: Part II: Rheological transformations during low-temperature cure and high-temperature properties of a model compound. Journal of Materials Science, 1996. **31** 80-85, (1996)

M.SE

Dehydration Cracking

- Geopolymers undergo shrinkage upon heating due to water loss¹
 - RT to 100°C: Dehydration of physically bonded (free) water
 - 100 to 300°C: Dehydration of chemically bonded (interstitial) water
 - >300°C: Dehydroxylation of OH groups
- This is described by the Young and La Place Equation: $\Delta P = (2\gamma \cos \phi) / r$
- Dehydration shrinkage causes cracking of monolithic geopolymer
- Reinforcing or filler phases can be utilized to maintain structural integrity during shrinkage by crack-bridging and offering pathways for more graceful dehydration

¹J. Davidovits, *Geopolymer Chemistry and Applications*, 2008.

Reinforcements

- Chamotte/mullite particulates, granite, dolomite sediment
- Chopped fibers
 - Alumina (13 μ m D x 100 μ m long)
 - Basalt (50 μm D x $\, \ensuremath{\mathcal{U}}^{\prime\prime} , \, \ensuremath{\mathcal{U}}^{\prime\prime}$ long)
 - Carbon (7 μm D x 60 or 100 μm long)
- Alumina platelets (D = 50 μ m)
- Woven fabric
 - Carbon fiber
 - Nextel 610 alumina, 720 mullite + alumina, 550 mullite
 - Basalt weaves and felts
- Mullite single crystal fibers (Moscow)
- Polymeric chopped fibers polyproplyene (½", 1", 2")
- Biological fibers
 - Corn husk fiber bundles Cordgrass (Illinois)
 - Jute (China, India)
- Abaca (Manila hemp) and Hemp
- Fique (Colombia)
- Malva (Amazon)

Cork

- Curaua (Amaon)

BENCHMARK STRUCTURAL PROPERTIES of GP CERAMIC COMPOSITES

<u>Material</u>

- KGP-chamotte particulate
- Alumina platelets
- KGP-chopped basalt $\frac{1}{2}$ " $\phi = 13 \ \mu m$ $\frac{1}{2}$ " $\phi = 13 \ \mu m$
- Chopped C fiber 60 μ m ϕ =7 μ m
- Chopped Al_2O_3 fiber CsGP ϕ = 3 μ m
- Nextel 610 weave
- Nextel 720 weave
- Basalt plain weave
- Chopped strand mat
- Nextel 610 weave in KGP
- Nextel 720 weave in KGP
- Plain basalt weave in KGP
- Nextel 610/monazite in alumina

Flexure strength (MPa)

- 2.1 ____ 15.3 for 50 wt%
- 2.0 ____ 20 (or 40 at HT)
- 1.7 ____ 19.5 for 10 wt%
- 2.2 27 for 10 wt%
- 8.8 14.1 for 10 wt%
- 10 ²⁰ for 20 wt%
- 8.7 7 50 for 33 vol%
- 8.7 → 40 for 27 vol %
- 4.5 41.4 for 30 vol%
- 4.5 31.7 for 20 vol %
- Tensile strength (MPa)
- 2.5 ~ 205
- 2.5 ~ 125
- 1.2 ____ 38
- 0.25 → 117

Basalt chopped strand mat reinforced GP Composites

unar

Reinforcement	Wt %	Flexure
	Additions	strength (MPa)
Chamotte $(25 \ \mu m)^{16}$	50	15.33
Dolomite $(45 \ \mu m)^{94}$	20	15.92
Mica phlogopite platelets $(50-100 \ \mu m)^{88}$	20	11.4
Granite powder ($\leq 90 \ \mu m$) ¹⁷	55	10.3
Dicalcium phosphate (DCP) ⁵¹	15	9.8
Hydroxyapatite bone ash ⁵¹	15	9.5
Alumina platelet grinding media $(50 \ \mu m)^{97,98}$	70	20 (RT) to 40 (at 1200°C)
Alumina chopped Saffil [®] fibers ($\phi = 3 \mu m$) ⁹⁹	20	20
Carbon chopped fibers (60 μ m x 7 μ m ϕ) ⁴⁹⁻⁵¹	20	22.2
Carbon chopped fibers (100 μ m x 7 μ m ϕ) ⁴⁹⁻⁵¹	20	29.9
Basalt chopped fibers $(1/4")^{14,13}$	10	19.5
Basalt chopped fibers $(1/2")^{14,15}$	10	27
Graphene nanoplatelets	3	12
Basalt felt ¹⁸	10	22.2
Fiberglass felt ¹⁸	10	5.6
Basalt 4" chopped strand mat ¹⁹	20	31
Basalt fiber weave ¹⁹	30	41
E-glass Leno weave ⁸⁹	25	25.6
Carbon unidirectional fiber ^{53,54}	20	269
Nextel 610 alumina (8 satin weave) ³⁰	50	45.8
Nextel 720 (mullite +15 vol % alumina) ³⁰	50	46

Table 5. Summary of flexure strengths of geopolymer composites (GPCs) with various inorganic reinforcements

Synthetic and Biological Fiber Reinforcements

<u>Material</u>

- NaGP-polypropylene
- ¹/₂", 1", 2"
- Corn husk fibers
- China jute weave
- Colombian fique
- Brazilian malva
- Brazilian curaua
- Abaca (Manila hemp)

SEM of Polyproplyene Fibers

Innegrity Polypropylene (PP)
(a) 0.5" fibers with diameter 47±1 μm
(b) 1" fibers with diameter 50±1.5 μm
(c) 2" fibers with diameter 48±1 μm.

Optical micrograph of PP-geopolymer composite broken in 3-point flexure (side view)

Optical micrograph of PP-geopolymer composite broken in 3-point flexure (top-side, hairy view)

Optical micrograph of PP-geopolymer composite broken in 3point flexure (bottom view)

3-pt flexure of PP fiber - geopolymer composites

Average maximum failure stress of sample as a function of fiber length and composition

Mas E Illinois

NaGP/CHF Composite Panels

- The uncured panel was then covered with a Delrin top piece and placed in a hydraulic press at 50 psi for 24 hours to compress the panel and remove excess geopolymer matrix material
- Following the cold press process, the panel mold was sealed and placing in the oven at 50°C for 24 hours for final curing
- Cured panels were cut into mechanical testing samples using a wet tile saw with high speed diamond abrasive cutting wheel
 - Flexural test specimens: 10 mm x 60 mm
 - Straight-sided tensile test specimens: 25 mm x 150 mm

	M _f	Fiber Orientation	Wetted/Unwetted
Panel 1	13.28%	Quasi-aligned	Wetted
Panel 2	12.99%	Quasi-aligned	Unwetted
Panel 3	14.45%	Random	Wetted
Panel 4	12.01%	Random	Unwetted

In the Amazon (Manaus, Brazil).....

As-received jute reinforced sodium geopolymer plate

Plate impact testing apparatus

Plate impact testing

1 inch

Figure shows 4" x 4" jute plates(left) after plate impact testing

Impact tests

SEM of Curaua Fiber-reinforced Geopolymer

Synthetic and Biological Fiber Reinforcements

Material

- NaGP-polypropylene
- ½", 1", 2"
- Corn husk fibers
- China jute weave
- Colombian fique
- Brazilian malva
- Brazilian curaua
- Abaca (Manila hemp)

Flexure Strength (MPa)

- 1.8 \longrightarrow 18.3 for 2.5 wt% (2"),
 - → 15 MPa (1"), 14.5 (½")
- 2.5 \longrightarrow 20.5 treated, 15 untreated
- 2.5 11.4 I-D treated 7.1 2-D treated
- 2.5 18.3
- 2.5 *→* 12.8
- 7.9 → 52.3

"Abaca" fiber, also known as "Manila hemp," is grown in the Phillippines, Ecuador and Costa Rica

The extremely strong fibers are often used in twine and ropes, and can be pulped to make specialized paper

Amazonian Bamboo

Fast growing and high yield renewable resource Readily available in Brazil Governmental support 40-50 culms per clump 10-20 culms yearly Maximum height in 4-6 months Daily increment of 150-180mm

4 years to mature

Reactivity of Amazonian Metakaolin for Geopolymer Synthesis

Brazil Mineral reserves as source of aluminosilicates

Reactivity of Amazonian Metakaolin for Geopolymer Synthesis

Amazonian MK

Replacing Portland Cement

Photo by Ruy A Sa Ripeiron

Brazil

Mineral reserves and byproducts as source of aluminosilicates

Photo from brminer.com

Fibers, particles and strip of native or natural materials grown in the Amazon

Promote higher strength, rigidity, and workability, generating green highperformance materials

Regional and local materials

in the production of geopolymeric composites reduce environmental impacts and raise their practicality

Photo from flickr.com/nasfizo

Bamboo fibers

Low cost High strength and biodegradability Absorption of CO₂ and production of O 3 times more than other plants

Strong Colombian bamboo Collaboration with INPA (Instituto National de Pesquinsas de Amazonas)

Reactivity of Amazonian Metakaolin for Geopolymer Synthesis

Experimental procedures

Chopped bamboo fibers micro BF1A and short BF4W fibers

Experimental procedures

Mixed Alkali Regional Metakaolin-Based Geopolymer

1 = powder

4 = fibers

GPC Compressive Strength ASTM C1424-10 KNa-MKA / KNa-MKA-BF1A / KNa-MKA-BF4A / KNa-MKA-BF4W

^{K75}-Na25 Water^{Glass} ^{16May}15 ^{k75}-Na25 WaterGlass

TTAGE

16May15

Chopped Guadua Angustifolia bamboo reinforcements

Figure 1. (A) Water-treated bamboo culms; (B) mechanically attained air-dried fiber bundles; (C) washed BFs reinforcement just before use

Panels and test samples of 6 " x 8 "

Experimental procedures

Mixed Alkali Regional Metakaolin-Based Geopolymer

Third-Point Loading Flexural Strength ASTM C1341-13 KNa-MKA-BF1A/BF4W

Using natural Amazonian clay

Reactivity of Amazonian Metakaolin for Geopolymer Synthesis

Experimental procedures

GPCs'

strengths tested in compression and flexural loading

KNa-MKA67 XRD and SEM techniqu used to characterize the material

X388 580m 1 18 45 BEC

Reactivity of Amazonian Metakaolin for Geopolymer Synthesis

0

KNa-MKA76-BF4W

GPC

KNa-MKA76-BF1A

K-MKM

Na-MKA76

SEM KNa-MKA GP KNa-MKA-BF4W GPC

	GPC	Modulus β Shape	Scale σ _o (MPa)	σ _{c-avg} (MPa)	SD (MPa)	L95% (MPa)	U95% (MPa)
ĸN	a-MKA76	11 590	58 20	55 70	5 83	51 98	60 12
		11.000	00.20	55175	5100	51.50	00112
KN	a-MKA76-BF1A	3.303	33.11	29.70	9.90	22.91	38.08
KN	a-MKA76-BF4A	15.38	24.76	23.93	1.91	22.75	25.24
KN	a-MKA76-BF4W	12.010	28.07	26.90	2.72	25.37	28.84

Compressive Strength

Flexure Strength

GPC	Modulus β Shape	Scale ơ _o (MPa)	σ _{f-avg} (MPa)	SD (MPa)	L95% (MPa)	U95% (MPa)
KNa-MKA76-BF1A	1.323	6.59	6.07	4.63	3.96	7.73
KNa-MKA76-BF4W	8.619	7.50	7.09	0.98	6.52	7.71

Summary of Amazonian Resources

1) SEM reviewed near to full reactive Amazonian MK Na-GP matrix; resulting in high 1-day compressive strength of **83.4 MPa** and flexural strength of **10.5 MPa**

2) XRD confirmed amorphous GP formation with a hump at **28° 2**⊖.

3) Amazonian MK is a **viable precursor** for geopolymer synthesis

Property	OPC	GPC
Compressive strength (MPa)	60	100 - 120
Flexure Strength (MPa)	5-6	10-15
Density (g/cc)	2.7	1.4
Setting time (days)	28	1

Table 1. Comparison of Mechanical Properties of Portland Cements (OPC) with (GPC)

Table 2: Flexure Strength of GPCs with Organic or Biological Reinforcements

Reinforcement	% addition	Flexure strength (MPa)
Polypropylene chopped fibers (1/2 ")	2.5 wt %	14.5
Polypropylene chopped fibers (1 ")	2.5 wt %	15
Polypropylene chopped fibers (2 ")	2.5 wt %	18.3
Cork particles	60 wt%	2.5 (0.75 % strain to failure)
Abaca (banana leaf random fibers)	8.0 wt%	52.3
Corn husk fibers	13 wt %	7.6 (7 % strain to failure)
Jute weave	30 wt %	20.5
Colombian fique / sisal (unidirectional)	50 wt %	11.4
Amazon ian malva (unidirectional)	5.5 wt %	31.55
Amazon ian curaua (unidirectional)	8.3 wt %	18.86
C hopped bamboo in Amazonian kaolinite	15 wt %	6-7 MSE

Reinforcement	Wt %	Flexure strength
	Additions	(MPa)
Polypropylene chopped fibers $(1/2")^{\prime \circ}$	2.5	14.5
Polypropylene chopped fibers $(1")^{\prime 0}$	2.5	15
Polypropylene chopped fibers $(2")^{\prime 0}$	2.5	18.3
Cork particles ^{°2}	60	2.5 (0.75 % strain)
Abaca (banana leaf fibers or "Manila hemp") ⁹³	8	52
<i>Corn husk</i> fibers ^{'5}	13	7.6 (7 % strain)
Rice husk stems in rice husk silica-based GP ^{ov}	7	12.4
<i>Jute</i> weave ^{'°}	30	20.5
Colombian <i>fique/sisal</i> (unidirectional) ^{/9}	50	11.4
Amazonian <i>malva</i> (unidirectional) ⁵⁵	5.5	31.55
Amazonian <i>curaua</i> (unidirectional) ⁹⁰	8.3	18.86
Amazonian Guadua Angustifolia chopped	20	4
<i>bamboo</i> dispersed in Amazonian clay-based geopolymer ⁸⁴⁻⁸⁷		

Table 6. Flexure strength of GPCs with organic or biological reinforcements

SUMMARY of GP COMPOSITES

- Alkali activated cements are not the same as geopolymers
- A key feature of geopolymers is their formation by dissolution of the aluminosilicate source to form AlO₄⁻ tetrahedra which undergo polycondensation with SiO₄ tetrahedra to precipitate out as an inorganic aluminosilicates
- Strong geopolymer composites can be made using ceramic, synthetic or biological reinforcements

<u>42nd International Conference and Expo on Advanced</u> <u>Ceramics and Composites (ICACC'18)</u>

Symposium on Geopolymers (17 conference proceedings to date)

January 21 – 26 (2018) Daytona Beach, Fla. USA

Geopolymers II:

Versatile Materials Offering High Performance and Low Emissions

An ECI Continuing Series

May 27-June 1, 2018 Hotel Dos Templarios Tomar, Portugal

> Mas E Illinois