Technical University of Liberec Czech Republic

Nanomodification of geopolymer composites

Petr Louda

Kovačič V., Bakalova T., Hiep L. Ch., Su L., Voleský L.

² Content of presentation

 Introduction - GP and nano
Experiments - fibres in geopolymer matrix - surface modification of GP
Results

Nanomaterials

Preparation of geopolymer composites with different types of fibres and their characterizations

- Carbon fibres and NPs;
- Silicon dioxide fibres;
- AI2O3 NPs;
- Basal net.
- Mechanical properties of fibres reinforced geopolymer matrix.

Experiment - influence of fillers in geopolymer matrix

	% (wt)	Carbon fiber (µm)	Carbon fiber(subµm)	SiO2(nm)	C (subµm) +SiO2(nm)
		3	0.1	0.1	0.1+0.1
		5	0.3	0.3	0.3+0.3
		7	0.5	0.5	0.5+0.5
		8	0.7	0.7	0.7+0.7
		10	1	1	1+1
	Price	Price 0.036÷0.06 EUR/g		8 EUR/g	
	Produced	Aerospace research	Miiling from	Kertak nanotechnology	
/		and test institute in Prague	Carbon fiber in µm		

Preparation samples

Preparation samples (photo by Linh.T.T)

Mix bauxis and activator in 3 min by hand, mix the mixture during 5 min by mixer.

•Add fibres into mixture and continue mixing it by mixer about 5 minutes.

•Vibrate the mixture in the mould – 3 min.

•Cure specimens in furnace.

Specimens testing:

Testing after 28 days According to **ASTM C 39/C 39M – 01** Calculate compressive strength: $R_m = F_{max}/S_0$ Modulus of elasticity: $E_m = 2707(\sqrt{R_m}) + 5300$ (MPa)

Nanofibres SiO₂ reinforced geopolymer

- effect of curing temperature on mechanical properties

Table of compressive strength and modulus of elasticity of geopolymer reinforced fiber with curing at 60°C for 24 hours

	Carbon Fiber (µm)			Carbon Submicro Fiber		Nanofiber SiO ₂	
% (wt)	R _m (MPa)	Em (GPa)	% (wt)	Rm (MPa)	Em (GPa)	Rm (MPa)	Em (GPa)
1	26.48 ±1.2	19.23 ±0.32	0.1	24.91 ± 1.34	18.81± 0.34	25.6 ±1.95	19 ±0.41
3	27.95 ±0.72	19.61 ±0.17	0.3	37.07 ± 1.67	21.78 ± 0.63	39.12 ± 3.2	22.23 ±0.81
5	31.16 ±0.42	20.41 ±0.69	0.5	38.96 ± 0.76	22.20 ± 0.54	44.83 ±2.73	23.42 ±0.44
7	33.57 ±1.23	20.98 ±0.38	0.7	39.81 ± 1.92	22.38 ± 0.61	47.69 ±1.08	23.99 ±0.59
8	42.37 ±1.17	22.92 ±0.59	1	36.92 ± 0.77	21.75 ± 0.52	36.2 ±1.55	21.59 ±0.67
10	29.54 ±2.1	20.01 ±0.67					

Pure geopolymer Rm = **25.36** ± 1.17 MPa Em = **18.93** ± 0.59 GPa **Ordinary Portland cement** Rm = **17- 40** MPa Em = **16.5- 22.4** GPa

Hydrophobic treatment

Sol-gel method

11

- Emulsion method = Impregnating liquid
- The methyl-silicon resin + xylene + NPs + NA?

Contact Angle Measurements

13

Sample	Θ [°]
Untreated	47.64
Pure emulsion	103.18
Emulsion with NPs	105.39
Sol-gel	97.58

RESULTS

Application of nanomaterials in GP improves utility properties.

- Compressive strength of SiO₂ nano fiber reinforced geopolymer is 2x higher than pure GP
- Basalt and carbon microfiber is applied because of competitive cost.

Surface treatment of geopolymer composites by chemical means enables improved properties of these materials.

