

Geopolymer cement adoption in Canada A market-focused approach

Donald Lake, CEO Terra CO₂ Technologies Ltd. **djlake@terraco2.com**

Long-term outlook of GP reagents?

Synthetic Glasses

Ferro-sialate: Great! If near a suitable deposit

Simple "activation" Synthetic glass is a global solution!

"Geosynthesis" – status quo in nature

New wide variety of feedstocks also builds on e.g. GEOCISTEM, "synthetic lava", "manufactured slag"

Engineered Glassy Reagents?

Common Rocks Unconsolidated Sediments Concrete Dem. Waste Some Mine Tailings Etc. **3 reagent types by** <u>**Ca**</u> **Content:** Low (0-10% CaO) Med. (10-20% CaO) High (20-35% CaO)

Synthetic Glass Reagents

- Avoid many problems of **mineralogy**
- Control over composition and reactivity
- Tailored to purpose **reproducible**
- Downside?
 - High T (but perhaps ½ energy can be recovered)
- Strategic Advantage
 - Control over production reliable, local
 - Use waste materials (collect disposal fee)

Glass Considerations

- Composition
- Structure

•Fineness, etc.

COMPOSITION: From OPC textbook

4th dimension needed for Na, K

STRUCTURE: define "glassy", "amorphous"

Example Feedstocks

- Demolished Concrete
- Fluvial Sediment
- Basalt

Demolished Concrete-based Reagent

Demolished Concrete-based Reagent

Phase	Weight %	
albite-low (calcian)	31	١
quartz-low	21	
albite-low	11	
orthoclase	8	J
calcite	8	
*CSH gel estimate	6	
clinozoisite	3	
actinolite	3	
clinochlore II	3	
biotite 1M	2	
ettringite	2	
C ₂ S beta	2	
brownmillerite (Al)	1	
gypsum	1	
Oxide	Weight %	_
SiO ₂	64	
Al ₂ O ₃	13	
Fe ₂ O ₃	0	
FeU	1	
MnO	0	
MgO c-b	2	(
Cap Na O		•
	5 2	
	۲ ۸	
H ₂ O	4	
2 -	•	

(Ca, Na, K) – poly(sialate-multisiloxo)

River Sediment-based Reagent

Fraser River, Vancouver, Canada Millions of tonnes of sediment are disposed of annually.

Heat-cured geopolymer concrete bricks

Basalt-based glassy reagent

Heat test - 750°C – 2 hours

Why high-temperature route?

• Simplicity

- Mechanochemistry
- Wet chemistry sol-gel etc.
- Energy 2-5 GJ
- Still no process CO₂!

So when can we start pouring concrete?

Approval process for geopolymer concrete in Canada

Why? Market Size Paradox

If you have \$ Billions in funding

Perhaps better to disguise GP reagent as "pozzolan"

Purpose-made reagents may be the bridge from OPC world to geopolymer world.

Why bother with Portland SCM?

- **1. Global Impact**: we need to displace Mt of OPC, immediately.
- 2. Political Pressure: low-CO2 cement.

Develop local capacity to support geopolymer cement when regulations catch up.

Cement CO2 Reduction Potential

E- electric heat C – Coal heat G – Oxy-CH4

What next?

- Certifying reagent as SCM
- Raising money for pilot plant in Vancouver, Canada
- Proving economics of process

Terra CO₂ Technologies

Donald (DJ) Lake, CEO djlake@terraco2.com