XATICO PERFORMANCE MINERALS

Foundation : 2006

- Countries : Benelux, Germany, France, Spain and Portugal
- Turnover : 4,3 millions € per year
- 8.300 MT sold per year
- + than 700 active customers
- **k** 6 warehouses
- Collaboration with external laboratories

ATIC

DRB 3

Our Partners

OUR PRODUCTS

Aluminium Trihydrate (ATH) Attapulgite Barium Sulphate (Barite) Bentonite Silicate-based inorganic binding agents (Betol®) Betolin® – Sapetin® – Sikalon® Calcinated Neuburg Siliceous Earth Calcium Carbonate (calcite – marble) Calcium Sulfate Anhydrite Collosil® – Inorganic adhesive Diatomaceous Earth Dolomite Geosil®

Kaolin Ligasil[®] – Stabisil[®] Magnesium Hydroxyde

Metakaolin

Metal Stearates Mica Natural Silica Nepheline Synite Neuburg Siliceous Earth Perlite Precipitated Silica Synthetic Sodium Magnesium Aluminum Silicate Talc Vermiculite Wollastonite Zeolite Zinc Borate Zinc Hydroxy Stannate Zinc Stannate

ALUMINOSILICATES

🗶 Materials rich in silica and alumina: SiO2 + Al2O3 > 80%

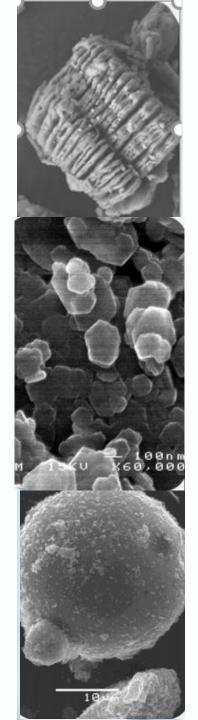
Synthetic: metakaolin, fly ash, calcinated by-products

🔀 Mining, calcination process and milling will influence the final properties

🗶 The more amorphous the material is, the more reactive it will be

Acts as a hardener in the geopolymer formulation

METAKAOLINS



X Material derived from kaolin which is dehydroxylated by heat treatment

- With heat, water is released from the crystalline structure
- This step generates the disappearance of the crystalline structure of kaolinite
- This disorganization allows its reactivity

Letter There are several industrial processes to calcine a kaolin clay

- Continuous furnaces: residence time ~ 4 hours
- Flash kilns: residence time less than 1 second

GEOPOLYMERIZATION

滨 Composition of the hardener and the different mineral fillers added

- Granulometry
- Composition of the amorphous phase
- Composition in $\rm SiO_2$ and $\rm Al_2O_3$
- Nature and composition of the silicate (molar ratio and nature)
- Solid/liquid ratio
- Cross-linking temperature
- Humidity condition
- Composition of each ingredient

The preparation conditions (mixing)

Physical and mechanical properties

Le métakaolin

The quantity of the deposit of Fumel is estimated at 5 10⁶ tons distributed

> 200 ktons 700ktons 4300ktons

Process de production

Extraction du matériau brut en carrière

Réduction du brut (0/300 mm) par un émotteur pour obtenir un 0/50 mm

Séchage et broyage du 0/50 mm

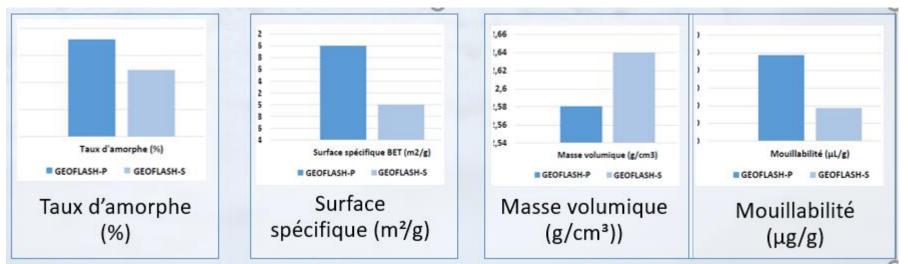
Sélection du 0/0,5 mm pour obtenir un cru 0/0,1 mm

Calcination du cru pour obtenir le métakaolin

Mélange de produits pulvérulents

GEOFLASH S & P – METAKAOLINs for GEOPOLYMERS

	Geoflash P	Geoflash S
Teneur en SiO ₂	62,4 %	69,8 %
Teneur en Al ₂ O ₃	30,5 %	21,6 %
Teneur en Fe ₂ O ₃	1,4 %	2,2 %
Teneur en TiO ₂	1,5 %	1,0 %
Teneur en CaO	1,8 %	0,3 %
Teneur en K ₂ O	0,1 %	0,3 %
Teneur en MgO	0,5 %	0,2 %
Teneur en Na ₂ O	0,05 %	0,1 %
Teneur en sulfates	0,3 %	0,13 %
Teneur en soufre	0,5 %	0,12 %
Teneur en chlorures	< 0,01 %	< 0,01 %
Masse volumique réelle	2400 à 2600 kgs/m ³	2400 à 2600 kgs/m ³
Usages principaux	Utilisation dans les produits géopolymères	Utilisation dans les produits géopolymères


Rapports molaires principaux	Geoflash-S	Geoflash-P
Rapport SiO ₂ /Al ₂ O ₃	2,7	2,04
Rapport SiO ₂ /CaO	108,9	34,7
Rapport SiO ₂ /Fe ₂ O ₃	42,1	44,6

GEOFLASH S versus P

Limit the precursor's water demand

- Let Have a maximum and optimal ratio between reactive amorphous phases, non-dehydroxylated kaolinite and over-calcined (mullite).
- Contains few Calcium oxides → Used alone or in combination with other precursors that do not contain CaO, it therefore does not contribute to the formation of CSH.

GEOFLASH S versus P

Their reactivities have been tested according to the standard method <u>https://www.geopolymer.org/news/26-standardized-method-in-testing-commercial-</u> <u>metakaolins-for-geopolymer-formulations/</u>

The results show a good reactivity, in the right average \rightarrow both are well suited to be used as geopolymer binders. The values are:

- GEOFLASH-S: 32 minutes, 96° C

- GEOFLASH-P: 30 minutes, 103° C

Silicate	Molar ratio	Formula	МК	Formula	Curing 4 hours – 80°C Bending test (3 pts)
Geosil 14517 (K)	1,7	100g	Geoflash P	107,64g	7,3 MPa
Geosil 14517 (K)	1,7	100g	Geoflash S	76,23g	3,7 Mpa (powder at the surface – silica)
Geosil 34417 (Na)	1,7	100g	Geoflash P	128,71g	9,3 MPa
Geosil 34417 (Na)	1,7	100g	Geoflash S	91,15g	5 Mpa (powder at the surface – silica)

INORGANIC ADDITIVES

K Mineral fillers and reinforcements used to form a geopolymer composite

Fillers	Morphology	Material	Comment
Mineral fillers	Spherical shape	Silica Alumine	Reinforcement Inert & thermal stability
Mineral fillers	Acicular shape	Wollastonite	Passive anti-corrosion pigment - Reinforcement
Mineral fillers	Lamellar shape	Mica	High lamellarity – Chemically inert – High T° resistance
Mineral Fibers	Various length	Basalte	Reinforcement
Mineral Fillers	Powder Microsphere	Glass	Corrosion resistant Hydrophil (no surface treatment) – Smoothing cements

Silica SiO₂

It exists in the free state in different crystalline, amorphous or combined forms. In silicates, SiO_2 groups are linked to other elements: Al, Fe, Mg, Ca, Na and K. Amorphous silica can be used as an additive

Siliceous earth of Neubourg - Sillitin V85

SIO ₂	AL ₂ O ₃	Fe ₂ 0 ₃	Phase amorphe
87%	8%	<1%	8%

Alumine is found in nature in the form of various minerals

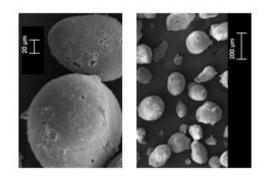
Albit 45 – Alumino silicate

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	d50	d98	Blancheur*
69-71%	17,5-18,5%	0,02-0,04%	0,50%	7µm	35µm	92%

* Datacolor 200M, D65, 10°

Corindon

 α -Al₂0₃ pure form obtained by calcination of Y-Al₂0₃ at high température (>1500C). Highly crystalline form, thermodynamically stable and poorly soluble in concentrated alkaline solution


SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	Na ₂ O +K ₂ O
Max. 0,1%	99,50%	Max. 0,03%	0,10%	Max. 0,3%

> Hollow mineral spheres of the aluminosilicate group

various granulometry 50-180µm 50-300µm 250-500µm 500-1000µm

SIO ₂	AL ₂ O ₃	Fe ₂ O ₃	CaO	K ₂ O	Na ₂ O
74%	13%	2%	2%	4%	4%

Feldspar : is produced from naturally occuring combination of alumina and silicate having mix oxides and no free crystalline silica. This material is hard and has angular particles that create a rigid reinforcing network.

Few particle size available

> Wollastonite : natural calcium silicate that can form needle shape during its genesis (acicular structure)

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	d50	d98	Blancheur*
> 44%		< 0,3%	> 49%	21 μm 33 μm 18 μm 8 μm	189 μm 136 μm 78 μm 37 μm	75% 87% 91% 86%

K Mica : Muscovite – High lamellarity – Powder & Flakes

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	K ₂ 0	Na ₂ O	MgO
46%%	32%	< 5%	11%	0,30%	0,20%

😕 Basalte fibers

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO + MgO
70-80%			18-25%

Microspheres: volcanic origin

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO
74,28%	12,80%	0,90%	0,90%

) Glass

Boruvit : powder of glass

SIO ₂	AL ₂ O ₃	Na ₂ 0	K ₂ O	CaO	Fe ₂ 0 ₃
69-71%	17,5-18,5%	10-11%	0,2-0,4%	0,50%	0,02-0,04%

21

Thank you for your attention c.lefevre@xatico.com

ATICO

www.xatico.com