

Geosil® – ready to use alkali silicates for Geopolymers

12th Geopolymer Camp 2021 - Saint-Quentin, France

Jörg Lind
Wöllner GmbH
Phone +49 17 34 30 12 11
joerg.lind@woellner.de
www.woellner.de

Dr. Simon Zunker
Wöllner GmbH
Phone +49 17 26 35 85 45
simon.zunker@woellner.de

Matthias Weiss
Wöllner GmbH
matthias.weiss@woellner.de

- Who we are
- Basics of alkali silicates
 - > Basic facts about alkali silicates
 - > Production methods
 - > Molar and weight ratio
 - > CLP Classification
- Alkaline solution for geopolymeric systems
 - Commonly used alkaline solutions
 - Geosil® Silicate binders for geopolymeric systems
 - Geopolymeric systems with Geosil®
- In-house testing methods
- R&D work in the Woellner Laboratory

COMPANY INTRODUCTION

~~	_	
	Ŕ	P
V iii		Ď.
ATU.	M	0

CCC Betol® Inorganic binders based on soluble silicates

Betolin®/Sapetin®/ Special binders and additives for

Sikalon® paints/plasters/construction chemistry

Collosil® Water-based special adhesives for

construction and insulating materials, paper

tubes and cores, special technical applications

Geosil®/Stabisil® Binders and hardeners for alkali-activated

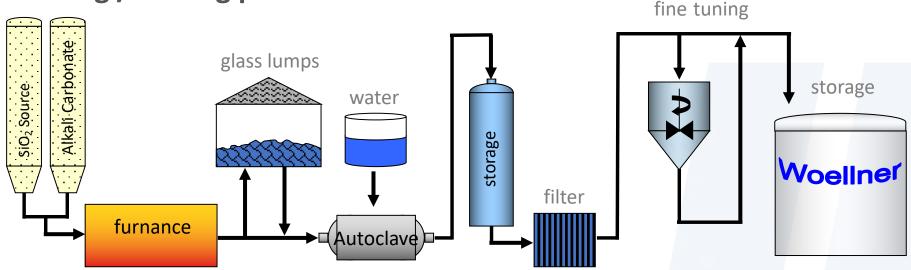
systems

Ligasil®/Stabisil® Binders and hardener systems for specialist

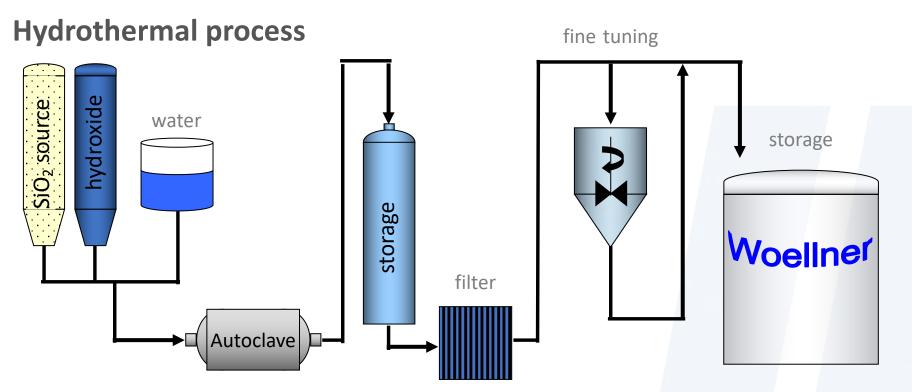
civil engineering and tunnelling

Basic facts about alkali silicates

Basic facts about alkali silicates


- Glasses soluble in water, resulting from combinations of alkali metal oxide (Na, K, Li) & silica (SiO₂) in varying ratios
- Alkali silicates are generally not distinct stoichiometric chemical substances
- No specific chemical formula for each product
- Trivial name = Waterglass
- Products available as solution and powder

Production methods


Melting / solving process

$$Me_2CO_3 + nSiO_2 \rightarrow Me_2O \cdot nSiO_2 + CO_2$$

$$Me = Na, K$$

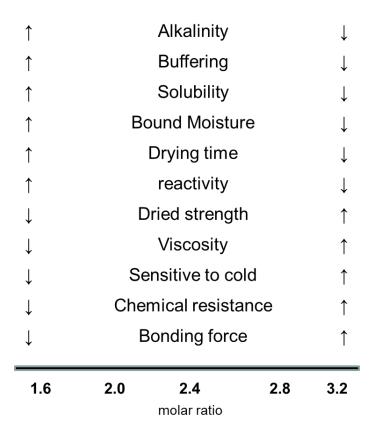
$$2 \text{ MeOH} + nSiO_2 \rightarrow Me_2O \cdot nSiO_2 + H_2O$$

Me = Na, K

Molar and weight ratio

Molar and weight ratio

$$Molar \ ratio: \frac{n \ SiO_2 \ [mol]}{n \ Me_2O \ [mol]} = MR$$


$$Weight \ ratio: \frac{w \ SIO_2 \ [\%]}{w \ Me_2O \ [\%]} = WR$$

Technical significant liquid Na, K & Li-silicates and mixtures thereof:

- Sodium silicate MR = 1.7 4.0
- Potassium silicate MR = 1.0 4.0
- Lithium silicate MR = 2.5 and 5.0

Influence of molar ratio on properties

CLP - Classification

	Molar ratio SiO₂ : M₂O	Classification Dangerous Substances (Handling)	Classification Dangerous Goods (Transport)	Classification according CLP
_	> 3,2 (Conc. < 40 %)	none	none	none
\Diamond	> 3,2 (Conc. > 40 %)	Xi Irritant R 36/38	none	Warning Skin Irrit. 2 H315 Eye Irrit. 2 H319
\Diamond	> 2,6 ≤ 3,2	Xi Irritant R36/38	none	Warning Skin Irrit. 2 H315 Eye Irrit. 2 H319
	> 1,6 ≤ 2,6	Xi Irritant R38, 41	none	Danger Skin Irrit. 2 H315 Eye Dam. 1 H318
The second second	≤ 1,6	C Corrosive R34	Cl. 8 / Packaging group II	Danger Skin Corr. 1B Eye Dam. 1 H314 Met.Corr. 1 H290

For more information please read the corresponding MSDS

Alkaline solutions for Geopolymeric systems

Usually used alkaline solutions

Sodium and potasium hydroxide

- + For basic trials and scientific research work
- Soluble silica powder has to be added
- High corrosive solution, strong requirements for storage and handling

Waterglass (Betol types) & hydroxide

- + Flexible adjustment of molar ratio
- Double handling and double storage (difficult to use on jobsite)
- Limitation of solids content

Geosil® - Silicate binders for geopolymeric systems

Geosil[®] - Silicate binders for geopolymeric systems

- Geosils are not blends of standard alkali silicates with hydroxide
- New production technology
- Highest possible solid content & optimal Q-structure distribution

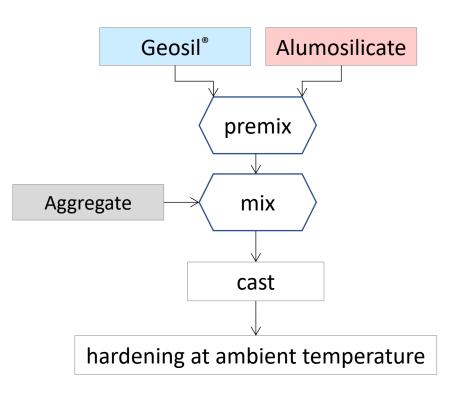
Pros

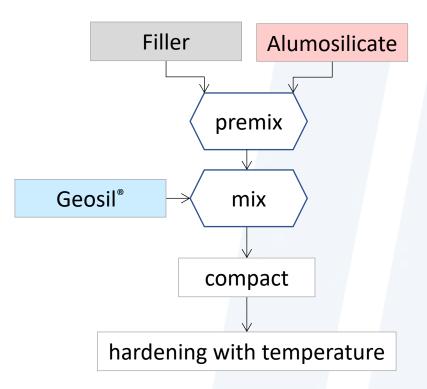
- + Ready-to-use solutions
- + Many variations are possible
- + Userfriendly no hydroxide handling
- + High purity of raw materials
- + Reproducable & controlled production process
- + Stable solution

Cons

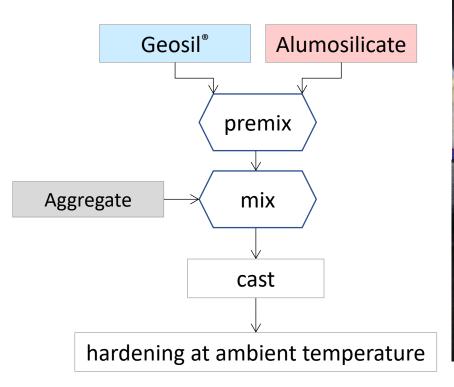
- Limitation: dangerous goods (ADR) for some molar ratios
- Molar ratio < 1,7 for sodium based products are not possible due to limited shelf life

Geosil[®] - **Types**


Product	Geosil® 14515	Geosil® 14517	Geosil® 34417
Alkali metal	potassium	potassium	sodium
Viscosity	20 [mPa·s]	20 [mPa·s]	430 [mPa·s]
CLP - classification	H290 / H314 (1B) / H318	H315 / H318	H315 / H318
CLP - label			
ADR - classification	Class 8 / packaging group II	non	non

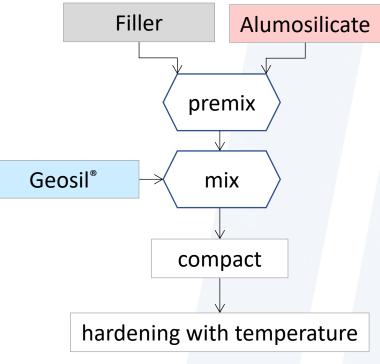

Geopolymeric systems with Geosil®

Binder rich system



High solids system

Binder rich system



High solids system

Binder rich system

- Geopolymer concrete
- Geopolymer adhesive
- Geopolymer mortar
- Inorganic foam A1 class
- Toxic waste immobilisation
- Composites
- Steel coating

High solids system

- Acoustic panels
- Thermal insulation boards
- Fire protection boards
- Refractory bricks
- Pavement stone
- Facade elements
- Core binder foundry
- Arts & decoration

In-house testing methods

Rheological and physical properties

Rheological properties

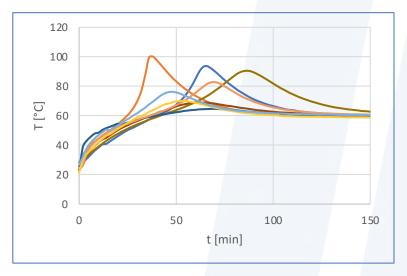
- Viscosity
 - > Thixotropy
 - > Flowability
- Concrete slump test
- Compacting

Physical properties

- Compressive / Cold crushing strength
- Tensile / Cold bending strength
- Adhesive strength
- Density
- Permeability
- Scratch resistance
- •

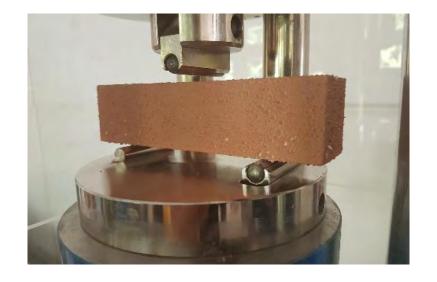
Rheological properties

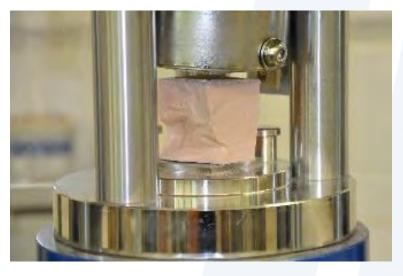
Workability according to DIN EN 1015-3


Concrete slump test

Reactivity

Kinetics measurement





Physical properties

Strength according to DIN EN 196-1

Tensile / Cold bending strength

Compressive / Cold crushing strength

Resistance and refractory properties

Resitance against.....

- Water / Vapour
- Acids
- Alkaline lye
- Organic solvent
- Freeze-thaw cycles and deicing salt
- •

Refractory properties

- Thermal shock resistance
- Pyrometric cone equivalent
- Softening under load
- Hot crushing and hot transverse strenght
- •

Refractory properties

Thermal shock resistance according to DIN 51068

High performance after 30 cycles

Low performance after 5 cycles

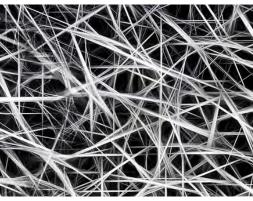
Water resistance

High water resistance

Low water resistance

Chemical resistance

High acid resistance Geopolymer


Low acid resistance OPC

R&D Work in the Wöllner laboratory

R&D work

- Raw material studies
 - Reactive raw materials
 - Functional and non-functional fillers
- How to reinforce?
 - Fiber materials
 - Laminated structured materials
- Additive study
 - Liquefying
 - Dispersing
 - Retarding
 - Shrinking
 - Cracking
- Development of testing methods

