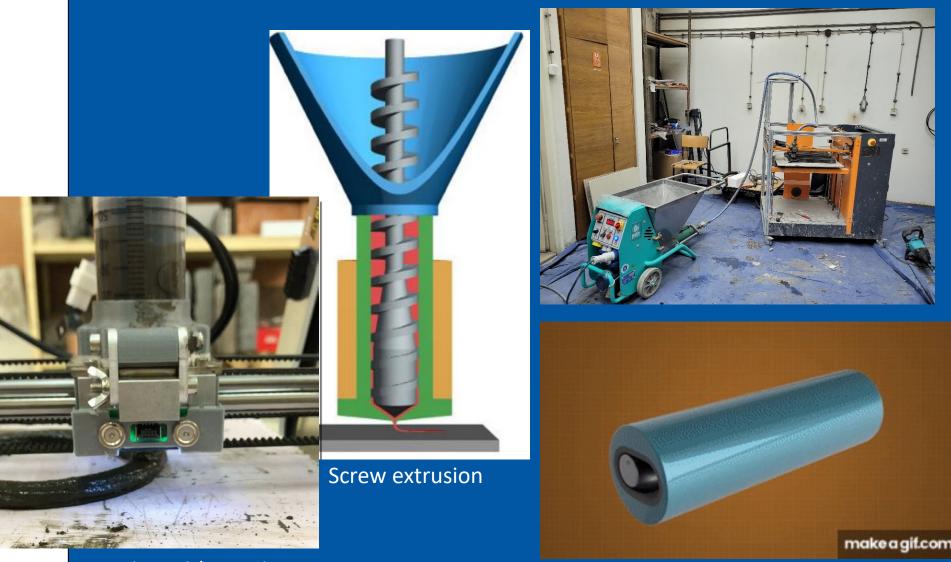


Geopolymer materials in 3D printing techniques


Szymon Gądek, Nina Polivoda, Barbara Kozub, Kinga Setlak

Cracow University of Technology, Faculty of Materials Engineering and Physics, Poland

09 July 2024 16th Geopolymer Camp, Saint-Quentin – France

Past extrusion material:

Extrusion with a syringe

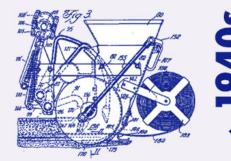
Stator pump

Past extrusion material:

make a gif.com

Extrusion with a syringe

Stator pump

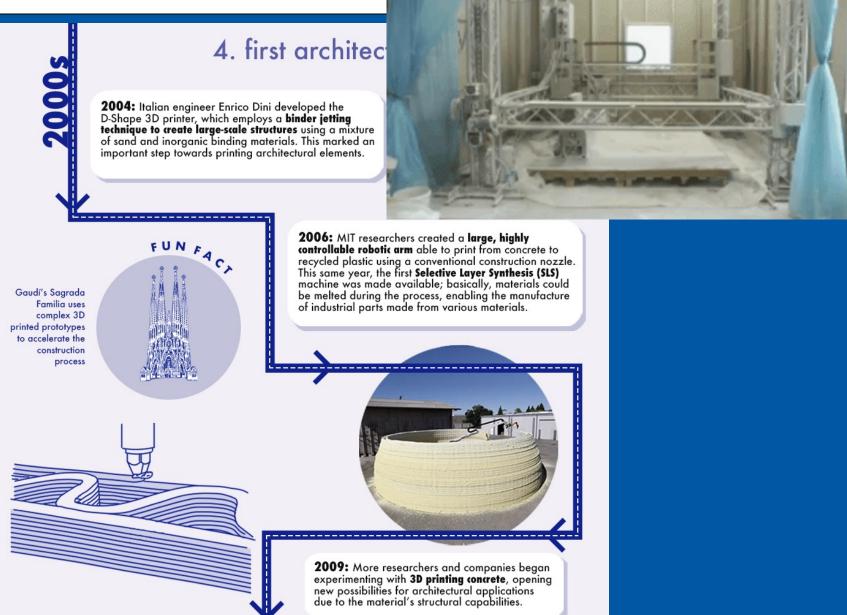

The Evolution of 3D Printing in Architecture:

THE EVOLUTION OF 3D-PRINTING IN

1. first

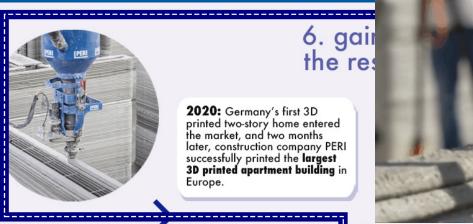
1939: Inventor William E. Urschel created the **world's first 3D printed concrete building** behind a small warehouse in Indiana, USA. His simple, yet ingenious machine consisted of an automatic ramming mechanism that compressed the concrete between spinning disks, consolidating and smoothing each layer as the material was extruded.

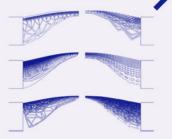
1930s



1940: One year after its creation, Urschel filed a series of patents for his **"Wall Building Machine"**, which would be used to fabricate multistory structures with integrated reinforcement and a self-supporting domes, all printed in concrete without formwork.

https://www.archdaily.com/1005043/infographic-the-evolution-of-3d-printing-in-architecture-since-1939




The Evolution of 3D P

The Evolution of 3D Printing in Architecture:



2021: After years of work, a **3D printed metal bridge** emerged in Amsterdam – a result of innovative 3D printing technology, generative design and topology optimization techniques.

2021: Architects and industry specialist WASP built the first, fully natural 3D printed construction made of raw earth. The sustainable housing prototype used multiple printers synchronized to work at the same time for 200 hours.

2021: BIG, Lennar and ICON set out to build the world's largest 3D printed neighborhood, comprised of 100 homes in Austin, Texas

2023: Exploring applications of large-scale robotic 3D printing, researchers at ETH Zurich used cement-free mineral foam made from recycled waste to develop a **lightweight insulated wall system** that can reduce building materials, labor and costs.

Binder Jetting

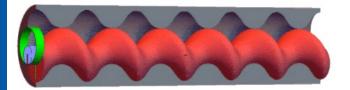
Mixing & applying



Small-Scale concrete 3D printer.

Typical print parameters: Material feeding speed – 2 [dm³/min] Print speed – 300 [mm/s] Layer height 10 [mm]

The dimensions of the printer's worktable are $460 \times 460 \times 40$ mm. When printing from the tested material, a nozzle with a diameter of \emptyset 20 mm was used.



stator pump

- Too dry
- Too moist

- Too dry
- Too moist
- You are printing too slowly _____ Flow not ada
 - low not adapted to ne printing speed

- Too dry
- Too moist

- Too dry
- Too moist
- You are printing too slowly
- You're printing too fast

Flow not adapted to the printing speed

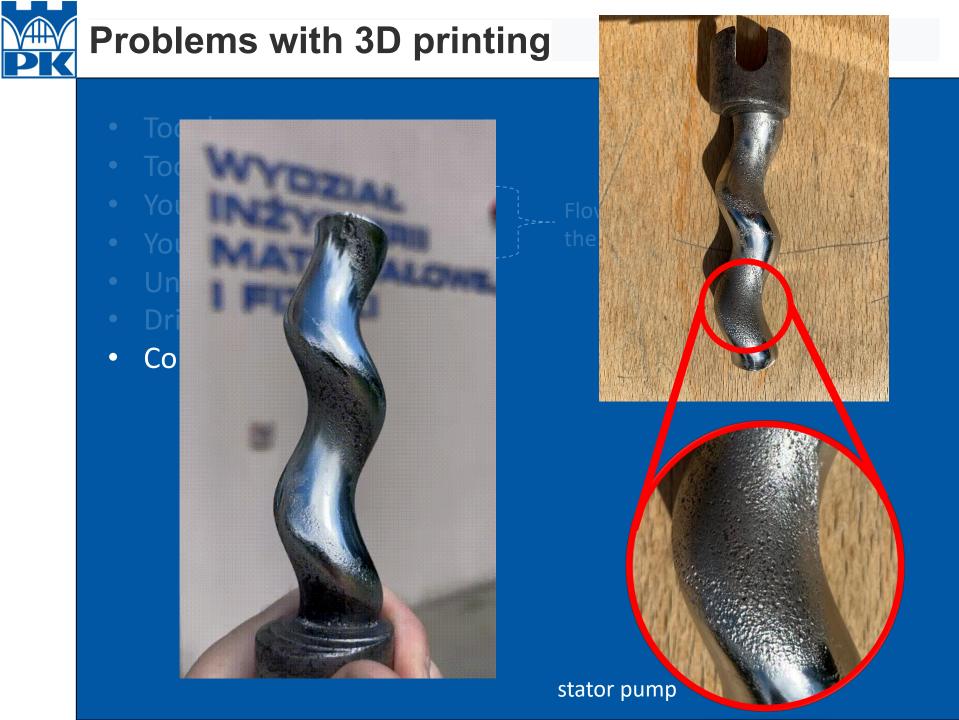
- Too dry
- Too moist
- You are printing too slowly
- You're printing too fast
- Unconnected layers
- Dries too slowly
- Corosion

Flow not adapted to the printing speed

- Too dry
- Too moist
- You are printing too slowly Flow not adapted t
- You're printing too fast
- Unconnected layers
- Dries too slowly
- Corosion

- Too dry
- Too moist
- You are printing too slowly
- You're printing too fast
- Un
- Dri
- Cor

Flow not adapted to the printing speed


<u> 3D-Printed House Construction Time-Lapse</u>

- Too dry
- Too moist
- You are printing too slowly
- You're printing too fast
- Unconnected layers
- Dries too slowly
- Corosion

	Project: Development of 3D printing technology for construction and facade prefabricated elements made of concrete		
	composites and geopolymers (PRINTGEOHOUSE)		
sources of	National (Polish) /EU—Polish National Centre for Research and Development in Poland.	1	
funding	Total project: ca. 1 784 050.00 EUR		
	Co-financing: ca. 806 342.38 EUR	Unival	
	Coordinators: Prof. Janusz Mikuła, Prof. Marek Hebda, CUT	- 100	
Duration	01/01/2019-31/12/2021		
Consortium	Cracow University of Technology		
	CKBM Sp. z o. o. Sp. K. (Company)		
Raw mat.	Metakaolin, fly-ash	the second	
Technology	Laboratory (testing materials): modified WASP 2040; Scale-up: Large-format printer (ATMAT)	No.	
Planned	Components for production of residential	Care -	
product	house on place)	-	Martin K.
Fundusze			Unia Europeiska

Fundusze Europejskie Inteligentny Rozwój

Rzeczpospolita Polska

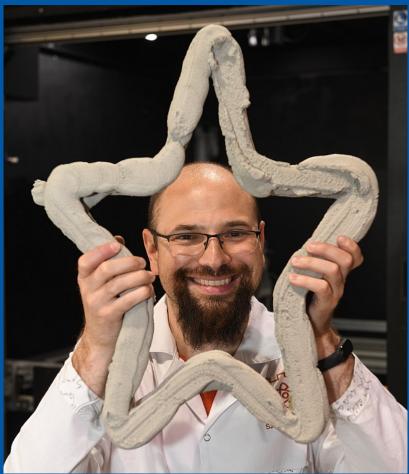
Unia Europejski Fundusz Rozwoju Regionalnego

	Project: Smart Geopolymers (SMART-G)	****
Amount and sources of funding	EU: ERA-MIN 2 (Call 2019), TOPIC 4. Recycling and Re-use of End-of-Life products Total project: 1 085 926 EUR (Coordinator: Prof. Hubert Rahier, VUB) CUT: 116 250 EUR (Coordinator CUT: Prof. Izabela Hager)	E R A·M I N 2
Duration	01/12/2020-31/11/2023	
Consortium	Lider: VUB - Vrije Universiteit Brussel, Belgium Partners: Portugal: University of Aveiro Greece: MNLT Innovations GP, IESL/FORTH, Mytilineos S.A. Poland: Cracow University of Technology, PBP Lęgprzem Sp. z o.o, Poland Belgium: ResourceFull	
Raw mat.	Industrial waste, red mud, CDW, etc.	NCBR
Technology	Extrusion - ATMAT company	
Planned	Tunnel	Narodowe Centrum Badań i Rozwoju

	Project: Development of lunar regolith simu Binder Jetting technolog		
Amount and	PL: National Science Center Poland, MINIATUR	A V	
sources of funding	Total project: 6 000 EUR		
	Coordinator: PhD Eng. Barbara Kozub		
Duration	02/12/2021-01/12/2022	Narodowe Centrum Nauki	
Consortium	сит	п	
Raw mat.	Regolith		
Technology	Manual trials (binder Jetting)	MINIATURA	
Product	Regolith		


Korniejenko, K.; Pławecka, K.; Kozub, B. An Overview for Modern Energy-Efficient Solutions for Lunar and Martian Habitats Made Based on Geopolymers Composites and 3D Printing Technology. *Energies* 2022, *15*, 9322. https://doi.org/10.3390/en 15249322

	Project: Development of geopolymer composites as a material for protection of hazardous wrecks and other critical underwater structures against corrosion (MAR-WRECK)	MAR-WRECK
Amount and sources of funding	EU: M-ERA.NET 3 CALL 2021, Call Topic: High performance composites Total project: 1 141 860 EUR	Narodowe Centrum Badań i Rozwoju
	(Coordinator: PhD Thomas Grab) CUT: 275 000 EUR (Coordinator CUT: PhD Kinga Korniejenko)	
Duration	01/06/2022-31/05/2025	
Consortium	Lider: Technische Universität Bergakademie Freiberg, Germany Partners: Cracow University of Technology, Poland HIBRID Sp. z o.o, Poland Technical University of Liberec, Czech Republic	
Raw mat.	Ashes, tailings, construction waste, etc.	STAL
Technology	Extrusion and binder jetting	M-ERA.NET
Planned	Material for underwater applications	



Thank you for your attention

Szymon GĄDEK

szymon.gadek@pk.edu.pl

Cracow University of Technology Faculty of Materials Engineering and Physics

This participation in the Geopolimer Camp is funded with founds of the Polish National Agency for Academic Exchange, under the STARS EU program, grant number BNI-UE-2023-8, acronym STARS CUT-UA and the Polish National Centre for Research and Development in Poland, under the M-ERA.NET 3 program, grant number M-ERA.NET3/2021/115/3D-FOAM/2022, 3D-FOAM - Foamed Geopolymer Made by Additive Manufacturing for the Construction Technology Applications.