# 

#### NaOH Replacement by High Salinity Water to Prepare Geopolymers

Sima Kamali University of Oulu, Finland.



## FPERU unit – University of Oulu

Fibre and Particle Engineering research unit focuses on sustainable inorganic and bio-based materials of circular and bio economies.

Our group under the supervision of Tero Luukkonen does research over three major themes: development of improved material preparation methods

modifying the surface functionalities

testing the materials in applications of water and wastewater treatment



#### **Objective of PhD thesis**



Industrial wastewater

#### Selected raw materials and waters



#### **Experimental Process**

1. Optimization of mix design using deionized water

- •Metakaolin, metakaolin/slag, or slag + NaOH solution
- •Analyses:
- •7 d compressive strength
- Setting time

2. Effects of high salinity waters

•NaOH solution prepared using 1X, 2X, 3X seawater and RO reject waters

- Analyses:
- •1 d, 7 d, 28 d compressive strength
- Setting time
- Calorimetry
- •Leaching test (crushed and uncrushed samples)
- Efflorescence
- Pore solution analysis
- ٠XRD
- •EPMA
- •SEM-EDS

3. Partial replacement of NaOH by the highsalinity water

- Blast furnace slag+ NaOH solution prepared using simulated brine
   Analyses:
- •7 d, 28 d compressive strength
- Isothermal microcalorimetry
  Dissolution test
- Thermodynamic modelling

#### **Main results**

• BFS-based geopolymer performed better overall than the Metakaolin-based geopolymer or mixture of them from the viewpoint of salt immobilization.

 Leaching test results indicates the effective immobilization of anions of chloride and sulfate in BFS-based geopolymer.



#### Compressive strength







#### **Dissolution test results**

#### ICP results.

| Sample ID                | Al<br>mg/L | Ca mg/L | Si mg/L | Fe mg/L | Mg mg/L |
|--------------------------|------------|---------|---------|---------|---------|
| Deionized water-<br>1h   | 1.8        | 2.6     | 2.5     | <0.05   | <0.125  |
| Deionized water-<br>24h  | 3.6        | 2.4     | 1.9     | <0.05   | <0.125  |
| sodium chloride-<br>1h   | 1.8        | 5.7     | 3.5     | <0.05   | <0.125  |
| sodium chloride -<br>24h | 3.8        | 3.6     | 5       | <0.05   | <0.125  |
| sodium sulfate-1h        | 2          | 6.7     | 4.3     | <0.05   | <0.125  |
| sodium sulfate -<br>24h  | 3.1        | 1.9     | 10      | <0.05   | <0.125  |



Ca/AI molar ration based on XPS results.

## **Conclusion**

A combination of compression strength and dissolution tests results plus thermodynamic modelling show that simulated brine as a sample of high salinity water improves dissolution of BFS. Additionally, NaOH can partially be replaced by simulated brine. A possible explanation of increased dissolution of BFS when using simulated brine is formation of ion pair complexes such as CaCl and CaSO<sub>4</sub>.



## Thanks for your attention!

