

Combining geopolymer technologies with natural building techniques

COMPETENCE CENTER FOR ECOLOGICAL BUILDING

Mikk Luht Founding and board member

EESTIMAAEHITUS - COMPETENCE CENTER FOR ECOLOGICAL BUILDING

- Advises and connects natural building enterprises, organizations and individuals
- Offers broad educational services
- Promotes traditional and modern solutions in field of energy efficient and natural building
- Is a member of Earth Build Europe network, European straw building association and a training partner of the Estonian Unemployment Insurance Fund
- Initiates cooperation between natural building enterprises and research institutions
- Initiates and manages local and International projects, and International networking
- In 2020 opened a Training, Product Development and Competence Center for Ecological Building in Mooste Manor

Earth

Natural fibers

COMPETENCE CENTER FOR ECOLOGICAL BUILDING

MATERIAL

PRODUCERS

DESIGNERS AND

ARTISTS

MEMBERS

VOLUNTEERS

FINISHERS

ARCHITECTS AND ENGINEERS

MATERIALS

LCA - Life-cycle assessment / Life-cycle analysis is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service.

Ecological Loop (Cradle-to-Cradle)

MATERIALS

EPD - Environmental Product Declaration quantifies environmental information on the life cycle of a product to enable comparisons between products fulfilling the same function.

NATURAL MATERIALS

Materials that can be used without chemical and/or thermal treatment

Sand

Natural fibers (wood, straw, hemp, flax, reed etc.)

Natural stone (limestone, fieldstone etc.)

ENVIRONMENTALLY FRIENDLY MATERIALS

Processed natural materials / Recycling / Industrial waste (circular economy)

Keep in mind the following when selecting the materials:

- as little energy as possible should be spent on the production and transport of the materials (primary energy content);
- as little energy as possible should be spent on the maintenance, use, renewal, or replacement of the materials (operational energy content);
- during the installation and use cycle of the materials, no compounds harmful to the environment or the indoor climate of the buildings should be released;
- the materials need to be reusable or their disposal should not harm the environment.

Bearing constructions

Insulation

Finish

WHY USE RAW EARTH FOR BUILDING AND FINISHING MATERIALS?

Natural

100% natural, chemically and thermally untreated.

Sustainable

With a very small ecological footprint, recyclable and disposal safe for the environment. Indoor climate

Balancing the level of relative humidity in the rooms and accumulate heat.

User friendly

Clay is a forgiving material that allows itself to be reworked when moistened. Safe and easy installation. Health

Does not contain volatile organic compounds, but can bind them, also suitable for allergy sufferers.

Unique

Countless possibilities for earthy pastel hues, unique textures, patterns and decorative finishing.

CLASSIFICATION

Structure

Monolithic

Brickwork

CLASSIFICATION

Light earth: up to 1200 kg/m3 With insulating properties Requires additional load-bearing structure

Massive earth: more than 1200 kg/m3 Thermal mass Load-bearing structure can be built

CLASSIFICATION

Dry Humid Plastic

Viscous

Liquid

STRUCTURE OF CLAYS

Shibam, Yemen. "Manhattan of the Desert"

Origin 300 AD, mainly built after 1532.

4-8-storey buildings up to30m high.

Aït Benhaddou, Morocco. Ksar - fortified village. Beginning in the 11th century, existing buildings from the 17th century.

Movies: The Mummy, Alexander the Gladiator, Game of Thrones

STABILIZING EARTHEN MATERIALS WITH BIOPOLYMERS

Polysaccharides

Proteins

Lipids

Cellulose Starch	Casein	Drying oi Fats
	Enzymes	
Natural gummies	Collagen	Waxes

Other

g oils

Tannins

Resins

Animal manure

STABILIZING AND COMBINING NATURAL MATERIALS WITH GEOPOLYMERS?

COMPRESSED EARTH BLOCK (CEB)

Earth/Clay

Stabilizer: organic/mineral (optional)

Sand/Gravel

Raw brick produced by a mechanical or automatic press.

Density: 1800-2200 kg/m3 Mixture: humid

TITI'

RAMMED EARTH

Rubble

Sand/Gravel

Stabilizer: organic/mineral (optional)

The mixture is tamped on the site between the formwork in layers of 10-15 cm, wall panels or blocks are pre-produced.

Bulk weight: 1700-2200 kg/m3 Mixture: humid

Capaul & Blumenthal Architects, Cinema Sil Plaz, Ilanz, Switzerland -

Glan Salis ch, Rammed Earth Pavilion, Zurich, Switzerland

rnative Technology, ig, Cent vid Lea A Aachynlleth, Wales

Stadium Center, Santa Clara, California, USA

Vegetarian restarau

Aidlin Darling Design, Stanford University, California, USA

Chartier-Dalix, Office building, Saint-Denis, France

a contraction

Chartier-Dalix, Kitchen island, Saint-Denis, France

POURED EARTH

Rubble

Stabilizer/deflocculant: organic/mineral (optional)

Sand/Gravel

CONCRETE

8% of all man-made CO2 emissions come from the cement industry 1 ton of cement = 0,6-1 ton of CO2

The energy intensity of raw earth mass mixtures (concrete, bricks, plasters) is 1-5% of that of cement mixtures

Sülchen Church Bishop's Tomb, Cukrowicz Nachbaur Architekten, Rottenburg am Neckar, Germanyn

Holiday Villa, Kasper Järnefelt, Barosund, Ingå, Finland

Mil Lieux Architeure, Kindergarten, Manom, France

Michael Frerking, residential building, Santa Fe, USA

3D PRINTING

Natural fibers (optional)

Stabilizer/deflocculant: organic/mineral (optional)

Sand/Gravel

LIME(STONE)

Bearing constructions

Insulation

Finish

INSULATION

Hempcrete (hemp-lime)

Lime

Hemp shives

Possibility: mineral light aggregates

Stabilizer: hydraulic additive

Decorative elements by Krohwin

Wall panels and decorative elements, made of hempcrete and finished with clay and lime plasters

BIOBASED MATERIALS

Natural fiber

Fiber borads

Fiber insulation

Fibers in mixtures

SILVER

Straw panel 400mm

Base coat clay plaster 27 mm

Jute reinforcement

Decorative clay plaster 3mm

U-value 0.123 W/m2K Thermal conductivity 0.0645 W/mK **Fire resistance** 120 min Flammability B-s1,dO 54 dB Airborne sound insulation Vert. load-bearing CAP up to 110 kN/m 115 kg/m3* Average straw density CO2 emitted in production 2.8 kg/m2* CO2 sequestered 97.6 kg/m2* *EcoCocon panel only

New fully automatic production facility for EcoCocon® straw panels in Slovakia. Straw panels combined with LVL trusses. Year of construction: 2023

Combining mass timber trusses with EcoCocon straw panels in the construction of a 10-story apartment building in Sweden. Year of construction: 2024/2025

Salix, 13-story residential tower building in Netherlands.

Hybrid building will be made using EcoCocon straw panels, along with concrete and wood.

THANK YOU! GET IN TOUCH AND FOLLOW US!

| COMPETENCE CENTER | FOR ECOLOGICAL | BUILDING

JOIN OUR TRAINING AND EVENT INFO MAILING LIST FOLLOW US IN SOCIAL MEDIA

