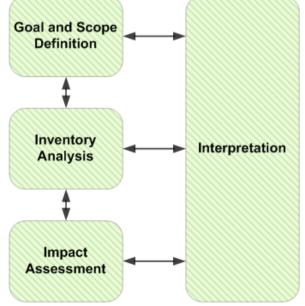
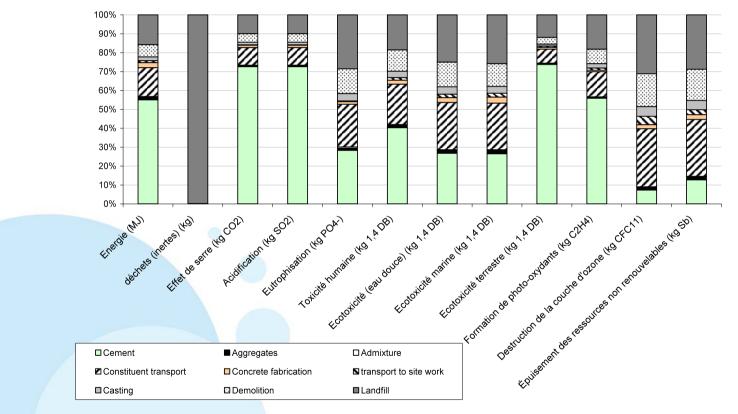
GEOPOLYMER BASED CONCRETES : ENVIRONMENTAL IMPACTS OF CURRENT RESEARCH TRENDS

G. Habert (LCPC, Paris) J.B. d'Espinose (ESPCI, Paris) N. Roussel (LCPC, Paris)

Objective

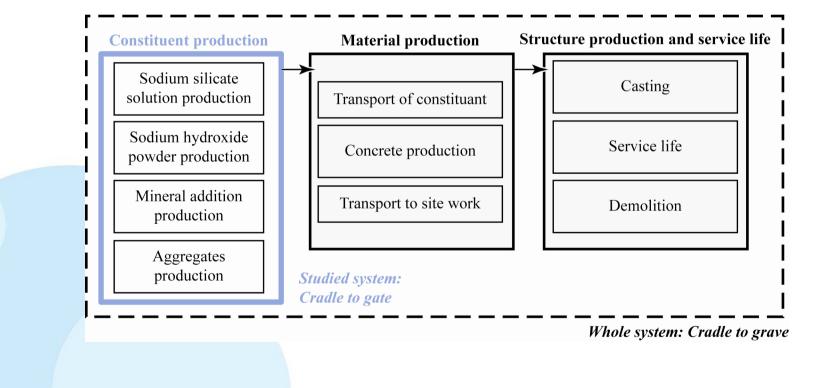

- Geopolymers are presented as an alternative for clinker based cement
 - Low CO₂ & great durability
 - » How much lower is it compared to traditional concrete?
 - An interesting reduction ? A massive diminution ? A serious one ? A very impressive improvement ?
 - » Stop adjective, let's use numbers
- Very few studies deals with environmental comparison between clinker and geopolymer based concretes

- Evaluate the environmental impact of geopolymer production
- Quantification of improvement compared to technological changes induced



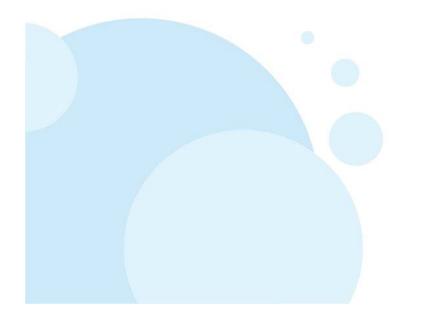
[ISO 14 040 standards]

Boundaries of the system and Functional Unit



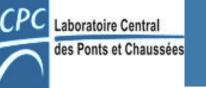
Reduce cement production impacts (and its transport) & improve recycling of concrete at the end of life

Boundaries of the system and Functional Unit


- Reduced to the **production** of the geopolymer constituents

Boundaries of the system and Functional Unit

- Reduced to the **production** of the geopolymer constituents
- Comparison for 1m³ with the same **mechanical properties**



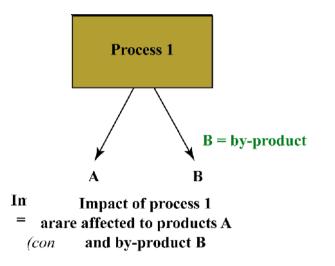
Boundaries of the system and Functional Unit

- Reduced to the **production** of the geopolymer constituents
- Comparison for 1m³ with the same mechanical properties

» Use Ferret equation:
$$f_c \approx K.Rc_{28} \cdot \left(\frac{V_{cement}}{V_{paste}}\right)^2$$

- » Calculate cement quantity that provide the same strength as geopolymer based concrete
- » Compare with 2 different concretes made with:
 - » CEM I: 95% Ordinary Portland Cement
 - » Currently used cement: 70% OPC, 30% Supplementary cementitious material

Boundaries of the system and Functional Unit


- Reduced to the **production** of the geopolymer constituents
- Comparison for 1m³ with the same mechanical properties
- Inventory
 - Technical data:
 - Geopolymer mix design come from literature and personal experiments
 - Environmental data:
 - Generic database, characteristic of European practice= Ecolnvent
 - Specific questions for allocation on Fly ash and blast furnace slag

What are the environmental impacts of these materials?

Supplementary Cementitious materials:

Fly ash: waste from *coal power industry* Blast furnace slag: waste from *iron industry*

2 allocation methods are tested: - No allocation: SCM = Waste - Economic allocation: SCM = by-product

Boundaries of the system and Functional Unit

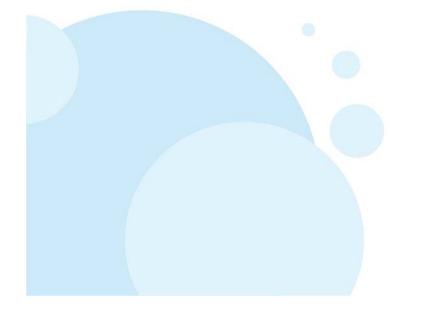
- Reduced to the **production** of the materials
- Comparison for 1m³ with the same mechanical properties

Inventory

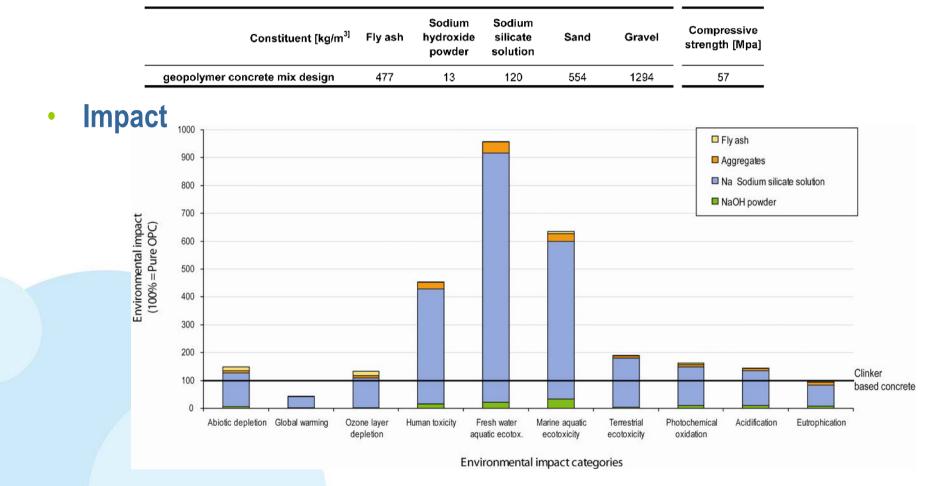
- Technical data:
 - Geopolymer **mix design come from literature** and personal experiments
- Environmental data:
 - Generic database, characteristic of European practice= Ecolnvent
- 2 allocation procedures are tested

Boundaries of the system and Functional Unit

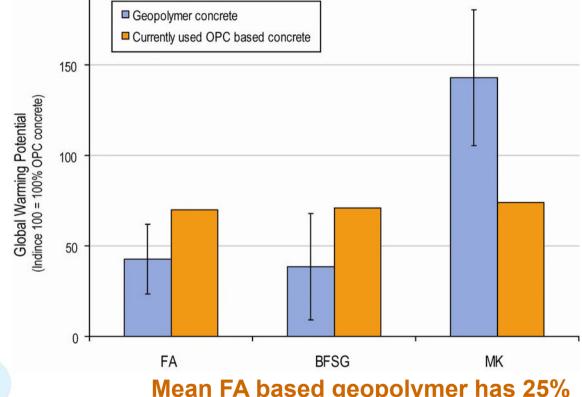
- Reduced to the **production** of the materials
- Comparison for 1m³ with the same mechanical properties


Inventory

- Technical data:
 - Geopolymer **mix design come from literature** and personal experiments
- Environmental data:
 - Generic database, characteristic of European practice= Ecolnvent
- 2 allocation procedures are tested
- Impact calculation
 - Global evaluation of all impact categories = CML indicators

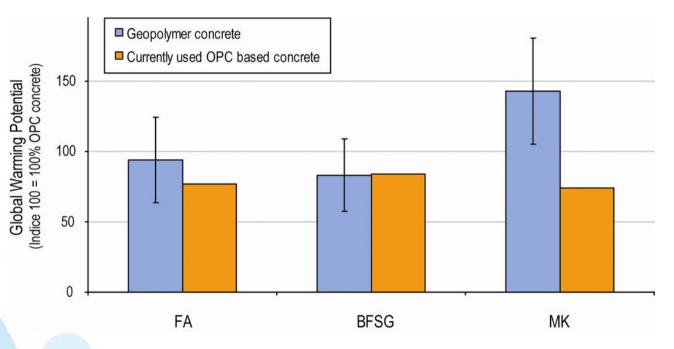

Global warming potential of the different components

Components [kg]	global warming Potential (GWP100) [kg CO ₂ eq.]
CEM I	8.44 10 ⁻¹
FA (No allocation)	5.26 10-3
FA (economic allocation)	$2.10 \ 10^{-1}$
BFSG (No allocation)	1.69 10 ⁻²
BFSG (economic allocation)	4.08 10 ⁻¹
Metakaolin (MK)	$1.00 10^{-1}$
Soda powder	$4.32 10^{-1}$
Sodium silicate	1.08
Sand	$2.40 \ 10^{-3}$
Gravel	4.29 10 ⁻³
Water (Tap water)	$1.55 \ 10^{-4}$
Plasticizer	$7.49 \ 10^{-1}$


• Fly ash based geopolymer

Sodium silicate solution controls environmental impacts ONLY Global warming is lower

- Concretes made with: Fly ash, Blast furnace slag or metakaolin
 - No allocation (waste)


Mean FA based geopolymer has 25% improvement than currently used concrete

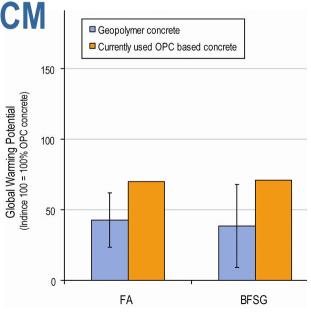
BFSG geopolymer has lower impact, But would be similar if compared to CEM III with 80% BFSG and not 30%...

Only for CO₂: Watch out for transfer pollution!

- **Concretes made with:** Fly ash, Blast furnace slag or metakaolin
 - Economic allocation (by-product)

No sensitive improvement of using geopolymer compared to currently used cement

Only for CO₂: Watch out for transfer pollution!

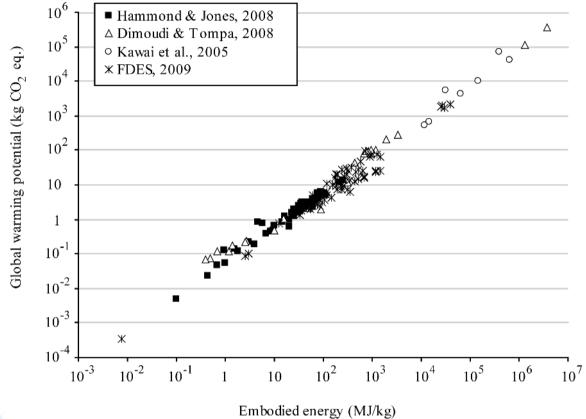


• Geopolymers have to be used for waste that can not be used as supplementary cementitous materials

(high alkali or heavy metals content)

- New resource
- No allocation question when it is a waste
- FA and BFSG geopolymers = similar as optimal technology with clinker & SCM
 - 50% of FA substitution
 » 5 to 20 % improvement if no allocation
 - 80% of BFSG substitution
 » No real improvement

» What is the durability comparison ? Need of durability experiments


- Geopolymers have to be used for waste that can not be used as supplementary cementitous materials
 - (high alkali or heavy metals content)
 - New resource
 - No allocation question when it is a waste

• FA and BFSG geopolymers: similar as "green" cement

- 50% of FA substitution
- 80% of BFSG substitution
 - » Need durability comparisons !
- MK geopolymers: Need better mix design
 - Use of plasticizers efficient for MK in alkaline environment
 - Replace sodium silicate by another silicon source
 - Combine MK with slags

energy

