

National Technical University of Athens School of Mining and Metallurgical Engineering Laboratory of Metallurgy

Research Group on Geopolymerization Engineering

Associate Professor D. Panias

Group Leader

I. Gianopoulou

PhD Candidate

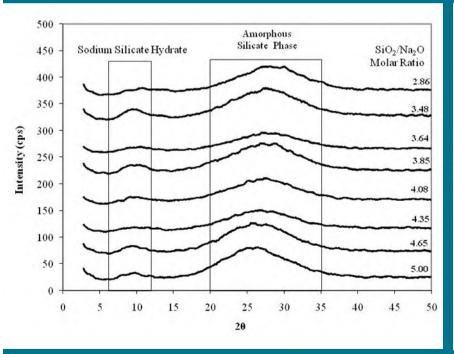
I. Douni

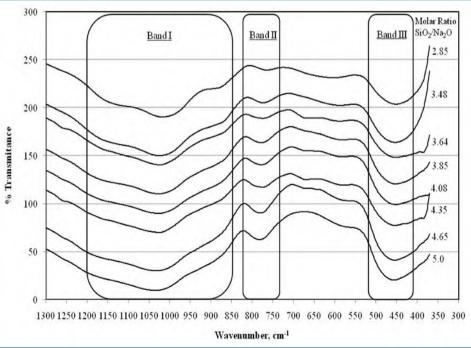
Metallurgical Enginner

K. Sakkas

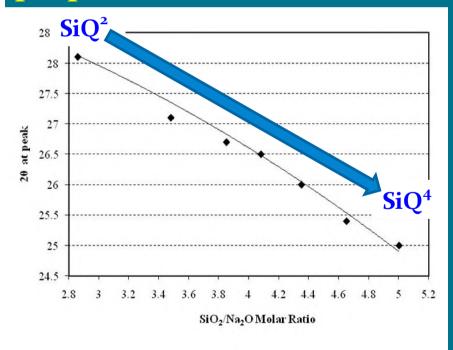
PhD Candidate

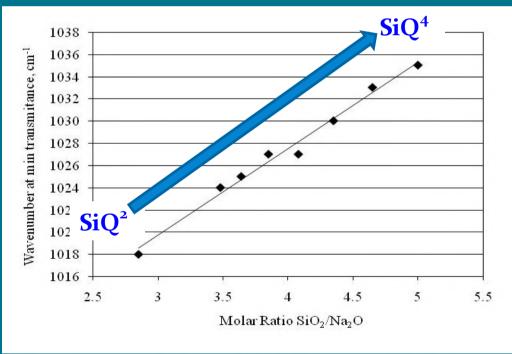
G.M. Tsaousi

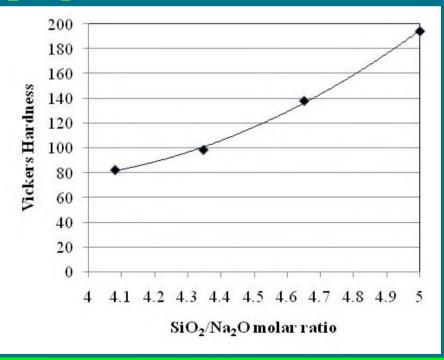

PhD Candidate

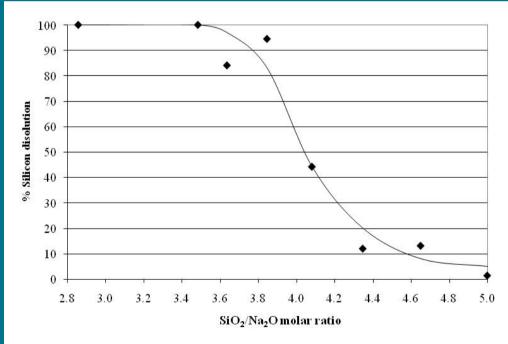


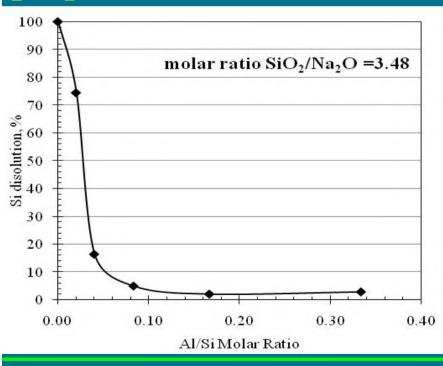
OBJECTIVES

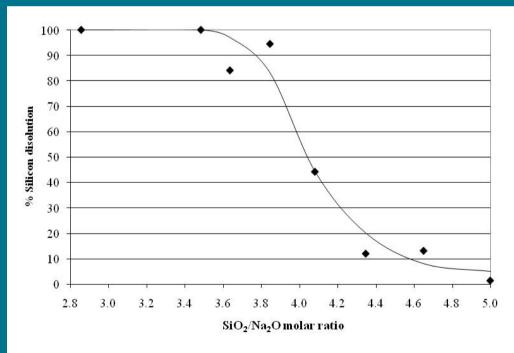

- Understanding of the fundamentals of the Geopolymerization Technology
 - A (1) basic research project funded by NTUA has already been performed
- Testing the geopolymeric behaviour of several byproducts from the Mining and Metallurgy sector
 - Four (4) projects funded by Greek Industries have already been performed
- > Developing thermal insulation and fire resistant materials
 - Three (3) projects funded by EC and Greek authorities as well as a German Industry are currently in progress

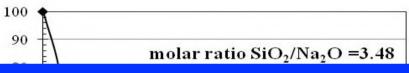


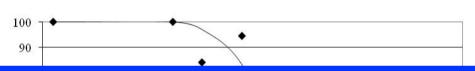


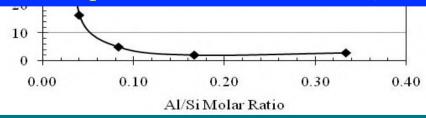


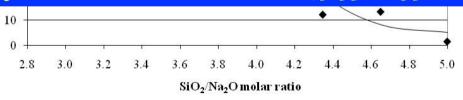












- 1. D. Dimas, I. Giannopoulou, D. Panias, "Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology", <u>Journal of Materials Science</u> (2009) 44:3716-3730
- 2. I. Giannopoulou, D. Panias, "Hydrolytic stability of sodium silicate gels in the presence of aluminium", *Journal of Materials Science* (2010) 45:5370-5377

We tested a number of aluninosilicate in nature industrial byproducts locally available in Greece

- Fired coal fly ashes
- D. Panias, I. Giannopoulou, T. Perraki, "Mechanical properties of fly ash-based geopolymers", *Colloids and Surfaces A: Physicochemical & Engineering Aspects* 301 (2007) 246-254

We tested a number of aluninosilicate in nature industrial byproducts locally available in Greece

- Fired coal fly ashes
- Alumina Red Mud
- D. Dimas, I. Giannopoulou, D. Panias, "Utilization of alumina red mud for synthesis of inorganic polymeric materials", <u>Mineral Processing and Extractive</u> <u>Metallurgy Review</u> 30 (2009) 211-239

We tested a number of aluninosilicate in nature industrial byproducts locally available in Greece

- Fired coal fly ashes
- Alumina Red Mud
- •FeNi Slags
- I. Maragos, I. Giannopoulou, D. Panias, "Synthesis of ferronickel slag-based geopolymers", *Minerals Engineering* 22 (2009) 196-203

We tested a number of aluninosilicate in nature industrial byproducts locally available in Greece

- Fired coal fly ashes
- Alumina Red Mud
- •FeNi Slags
- •Overburdens from bentonite exploitation Ultrafine perlite Metakaolin
- Flotation tailings from copper mines
- I. Giannopoulou, D. Panias, "The geopolymerization technology for the utilization of mining and metallurgical wastes", <u>Proceedings of the European Metallurgical</u> <u>Conference EMC 2007</u> Dusseldorf, Germany (2007) 625-640
- 2. I. Giannopoulou, N. Katsiotis, D. Panias, "Mechanical properties and thermal behaviour of geopolymeric materials synthesized from solid wastes of industrial minerals exploitation", <u>Proceedings of the 3rd Pan-Hellenic conference on metallic materials</u> Patra, Greece (2007) 423-428
- 3. I. Giannopoulou, D. Dimas, I. Maragos, D. Panias, "Utilization of metallurgical wastes/by products for development of inorganic polymeric construction materials", <u>Global NEST Journal</u> 11(2), 2009 127-136

We tested a number of aluninosilicate in nature industrial byproducts locally available in Greece

- Fired coal fly ashes
- Alumina Red Mud
- •FeNi Slags
- •Overburdens from bentonite exploitation Ultrafine perlite Metakaolin
- Flotation tailings from copper mines

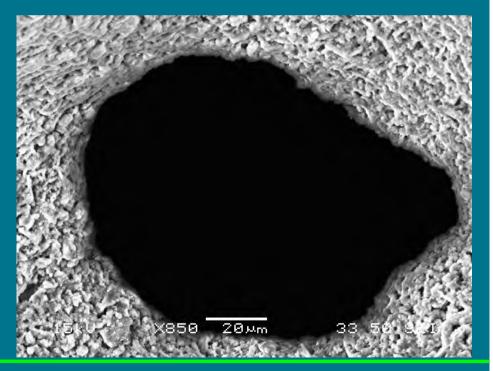
Among them ultrafine perlite and Feni Slag were selected for development of high added value inorganic polymeric materials

Thermal Insulation Materials based on Perlite

Two types of materials are under development

- 1. Foamed geopolymeric materials based on ultrafine nonexpanded perlite
- 2. Bound expanded perlite with geopolymeric pastes

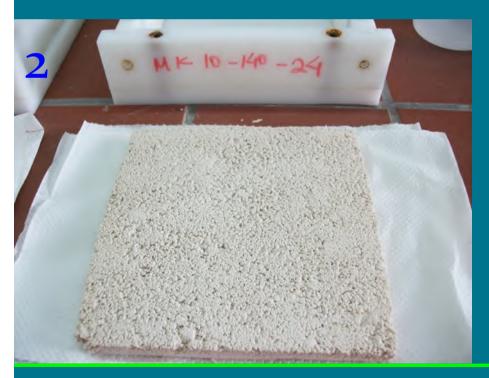




Thermal Insulation Materials based on Perlite

Two types of materials are under development

- 1. Foamed geopolymeric materials based on ultrafine nonexpanded perlite
- 2. Bound expanded perlite with geopolymeric pastes



Thermal Insulation Materials based on Perlite

Two types of materials are under development

- 1. Foamed geopolymeric materials based on ultrafine nonexpanded perlite
- 2. Bound expanded perlite with geopolymeric pastes

kPa

Thermal Insulation Materials based on Perlite

e non-

Tv 1.	vo type Foam	Matchai	Glass wool	Mineral wool	Extruded Polystyrene XPS	Expanded Polystyrene EPS	Foamy perlite Geopolymer	Bound Expanded Perlite
2.	expan Bound	Density kg/	13 – 100	30 – 180	20 – 80	18 – 50	290	250 - 350
		Thermal Conductivity W/m.K	0.03-0.045	0.033-0.045	0.025-0.035	0.029-0.041	0.03	0.03 -0.04
		Maximum Application Temperature °C	500	750	75	80	700	900
		Fire Class Compressive Strength at 10 % deformation	A1 – A2 16	A1 – A2 0.01 - 69	B1 – B2 100 – 700	B1 – B2 70 – 450	A1 780	A1 20 - 70

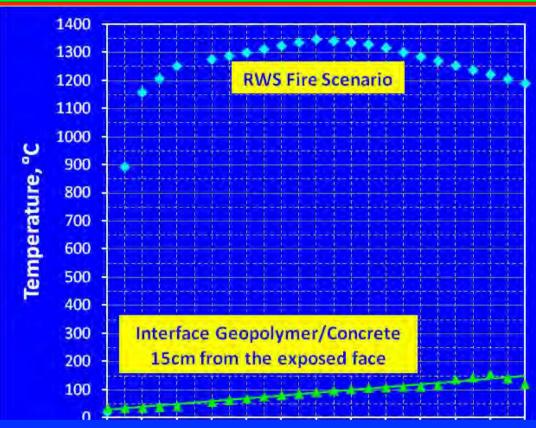
V. Vaou, D. Panias, "Thermal insulating foamy geopolymers from perlite", Minerals Engineering 23 (2010) 1146-1151

Fire resistant Materials based on FeNi-Slag

We are concentrated on materials for passive fire protection of tunnels that have the ability to set:

- a flame barrier reducing the possibility of spreading of an incipient fire
- a temperature barrier preventing the failure of construction elements such as concrete, steel rebars etc

Fire resistant Materials based on FeNi-Slag


We are concentrated on materials for passive fire protection of tunnels that have the ability to set:

- a flame barrier reducing the possibility of spreading of an incipient fire
- a temperature barrier preventing the failure of construction elements such as concrete, steel rebars etc

Fire resistant Materials based on FeNi-Slag

T > 300 °C severe concrete spalling phenomena

T > 550 °C severe steel rebars damages (expansion, softening and diminished structural integrity

- 1. I. Giannopoulou, D. Panias, "Fire resistant geopolymers synthesized from industrial wastes", <u>World Journal of Engineering</u> 5(3), 2018 130-131
- 2. K. Sakkas, D. Panias et al., "Inorganic polymeric materials for passive fire protection of underground constructions", *Fire & Materials*, 2011, under review

