# Utilization of bio-mass ashes (project QI102A207/2009)

### IVANA PERNÁ TOMÁŠ HANZLÍČEK

INSTITUTE OF ROCK STRUCTURE AND MECHANICS OF ACADEMY OF SCIENCES OF THE CZECH REPUBLIC V HOLEŠOVIČKÁCH 41, 18209 PRAHA 8 CZECH REPUBLIC

### Wastes and following problems

- Czech Republic: more than 90 biomass heat stations (more than 2 MW)
  - 40,000t of wastes per year in 2010
  - 70,000t of wastes per year in 2011
- High pH value of water extract pH>11
- Necessity of special deposition
- Increasing of operating and heat costs

## **Chemical composition**

Chemical composition of cinders from bio-masses (wt. %)

| Material/<br>Oxide (wt.%) | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | CaO   | SO <sub>3</sub> | K <sub>2</sub> O | Fe <sub>2</sub> O <sub>3</sub> | LOI  |
|---------------------------|------------------|--------------------------------|-------|-----------------|------------------|--------------------------------|------|
| Wooden<br>cinder          | 56.12            | 10.59                          | 14.17 | 0.06            | 5.55             | 8.47                           | 0.1  |
| Corn straw<br>cinder      | 56.54            | 2.43                           | 7.89  | 0.30            | 19.06            | 1.50                           | 5.30 |



## XRD analyses of bio-mass ashes

#### Mixed wood ash

### Mixed corn straw ash

- Calcite (CaCO<sub>3</sub>)
- Periclase (MgO)
- Portlandite (Ca(OH)2)
- Magnetite (Fe3O4)
- Quartz (SiO2)
- Lime (CaO)
- Arcanite (K2SO4)

- Quartz (SiO2)
- Sylvite (KCl)
- Cristobalite (SiO2)
- Magnesite (MgCO<sub>3</sub>)
- Arcanite (K2SO4)
- Calcite (CaCO<sub>3</sub>)
- Lazulite (MgAl2 (PO4)2(OH)2)



3. Sliding material to abrasives



## Pellets

#### **Microscopy view on pellet**

- Bio-mass ash binding by nature friendly organic material
- Tested by Czech University of Life Sciences in Prague:
  - Analyses of organic substances in biomass ashes
  - Pot experiments with addition of pellets



### 2. Additive to geopolymer matrix: Multipurpose composite



**Presented on Geopolymer Camp 2010** 

### 3. Sliding material to abrasives

- Matrix: mixture of industrially prepared primary clay material and blast furnace slag (1 : 1.8)
- Abrasives: brown corundum F36 (26 wt.%)
- Sliding material: corn straw ash (5 wt.%)



Semi-industrial grinding: Grinding stones fixed in holder

### Conclusion

- The present results showed very good possibility of biomass ashes utilization as fertilizer.
- Ashes from bio-mass burning are limited as main geopolymer material for their rather low alumina content but they are very perspective additive materials.
- We proved a possibility to use biomass ashes as sliding material in abrasives.

## Thank you for your attention

#### **Acknowledgement:**

 This work is supported by Scientific Research Plan No.: AVOZ 30460519 of the Institute of Rock Structure and Mechanics approved by Czech Academy of Sciences and by the Ministry of Agriculture of the Czech Republic through the project QI102A207/2009.