

Geopolymers & water treatment

Tero Luukkonen, 9.7.2014, Geopolymer camp, St. Quentin

How can geopolymers be utilized in water treatment (as adsorbents)?

- Adsorbent = material used to attach molecules (in this case) from water to its surface.
- Geopolymers are known to be amorphous analogues of zeolites.
- Zeolites can be used as ion exchangers in various water treatment applications: soluble heavy metal removal, water softening (Ca²⁺, Mg²⁺), ammonium removal etc. depending on the pore size distribution.
- Therefore: it could be assumed that geopolymers could have similar properties.

Mechanisms how geopolymers work as sorbents

- Geopolymers work similarly to zeolites:
 - Cation exchanger (releasing Na+ or K+ if prepared by geopolymerzation in alkaline medium) → only cations can be removed from water!
 - Adsorbent (chemisorption or physisorption).
 - Increase of pH due to residues of alkalis used in synthesis → precipitation of metal hydroxides. This effect decreases as geopolymer is being washed.

Smaller particle size / more porous structure → more surface area
→ more active sorbent.

Geopolymers in water treatment: some process options

diameter = $10 - 100 \mu m$

Water

- 1. As an active filter medium
- Geopolymer can be re-used (regenerated)

Treated water Filter containing geopolymer adsorbents, diameter ≈ 2 – 3 mm Water to be treated Geopolymer adsorbents,

2. As a slurry made from powder

- To be dosed to sedimentation process.
- Geopolymer not re-usable.

Geopolymer slurry Treated water Sludge

Internal

Water to be treated

How to prepare geopolymer adsorbents (some examples)?

- Dissolution of **rice husk ash** and **NaOH** pellets (97% purity) in distilled water. **Metakaolin** was added after the dissolution of silica. (Chem. Lett. 2014, 43, 128–130)
- The zeolitic tuff and kaolinitic soil were mixed in different ratios, and then the sodium hydroxide solution was added. After molding, compacting, curing at 80°C, the samples were ground and sieved into aggregate size between 250-500 μm. Then the product was washed with excess amount of distilled water (to remove unreacted alkali), dried at 100°C and kept in a desiccator. (Advances in Materials Physics and Chemistry, 2012, 2, 119-125)
- Fly ash was mixed with 14M NaOH solution using a mass ratio of 1.25. Geopolymer paste then started to form, which was mixed for 5–10 min to give complete homogenization. Vibration with ultrasonification to de-foam and enhance the dissolution of Al–Si material (fly ash) in the alkaline solution. The mixtures were then procured for 24 h at room temperature. The paste was then poured in a cylindrical container which was closed for curing at a temperature of 105 °C for 24 h in an oven. (Journal of Hazardous Materials 188 (2011) 414–421)
- How we did it: mixing of metakaolin with alkaline solution (10 M NaOH + Na-silicate). Curing at room temperature for 48 h. Crushing to required particle size. Washing with distilled water. Drying at 105 C.

What geopolymer adsorbents have been used to remove (examples)

- Cs + (Chem. Lett. 2014, 43, 128–130)
- Cu²⁺, Ni²⁺, Zn²⁺, Cd²⁺ and Pb²⁺ (Advances in Materials Physics and Chemistry, 2012, 2, 119-125)
- Pb²⁺ (Journal of Hazardous Materials 188 (2011) 414–421)
- Pb²⁺, Cu²⁺, Cr³⁺, and Cd²⁺ (Applied Clay Science 56 (2012) 90–96)
- Cs⁺ (Applied Clay Science 87 (2014) 205–211)
- Cu²⁺, Ni²⁺ and Pb²⁺ (Chemical Papers 67 (5) 497–508 (2013))
- Cu²⁺ (Journal of Hazardous Materials B139 (2007) 254–259)

Our research: Ni, As and Sb in real mine wastewater matrix.

Adsorption studies @ Kajaani University of Applied Sciences

- Preparation of fly ash, metakaolin and blast furnace slag based geopolymer adsorbents.
- Batch and continuous sorption tests with (real) mine wastewaters:
 - Adsorption capasities, q [mg/g]
 - Adsorption isotherms (Langmuir, Freundlich, etc.)
 - Kinetics (reaction kinetics equations)
 - Regeneration
- Characterization of geopolymers:
 - XRD (identification of crystalline phases)
 - XRF (elemental composition)
 - SEM-EDS (surface morphology, elemental composition)
 - BET (surface area, pore volumes)
 - IR (identification of surface chemical groups)
 - Total surface charge

XRD: metakaolin geopolymer

Counts

BET: surface area

- Specific surface area:
 - Metakaolin 11,50 m²/g
 - Metakaolin GP 22,42 m²/g.
 - (For comparison: activated carbon typically 1000 m²/g).
- Average pore width
 - Metakaolin 18,16 nm
 - Metakaolin GP 30,97 nm

Some preliminary results: removal of Ni

Removal of Ni with BFS geopolymer: kinetics

Removal of Ni with BFS and MK geopolymers: effect of pH and comparison with starting material

Internal

Conclusions and remarks at this point

- Geopolymerization as a process to produce efficient adsorbents (cation exchangers) seems promising.
- Possible to reuse via regeneration (for example concentrated NaCl solution).
- Geopolymerization increases adsorption capacity, specific surface area and average pore width.
- Some further research questions:
 - Na vs K hydroxide / silicate in alkaline geopolymerization?
 - Applicability of acidic medium geopolymers?
 - Optimization of geopolymer synthesis in terms of specific surface area?

SEM-EDS, x700, red=Al, green=Si, blue=O

THANKS FOR YOUR ATTENTION!