Granulation and coating with Geopolymer Binders

Henk Nugteren

Product and Process Engineering Group
Department of Chemical Engineering,
Delft University of Technology
The Netherlands

e-mail: h.w.nugteren@tudelft.nl

Henk Nugteren

Study Geology, Mineralogy, Ore Deposits at VU Amsterdam 1978

Research: New Products from waste materials (PhD in 2010)

GRANULATION

GOAL

Or is it an art?

Liquid content is crucial

STAGES OF WETTING

A) Pendular state

B) Funicular state

C) Capillary state

Growth regimes:

- Steady Growth
- Induction Growth

High shear granulator

(Eirich R-02)

Raw Materials and Activator Liquids

SOLIDS:

- Type C Pulverised Fuel Ash
- Peat and Wood Ash (Netherlands and Finland)
- Granulated Blast Furnace Slag
- Polluted Sand
- Metakoalin

LIQUIDS:

- Water
- Potassium Silicate Solution
- Sodium Aluminate Solution (Waste from Aluminium Etching)

THE LIQUID CHALLENGE

$$[4SiO_2 \cdot Al_2O_3] + 10 OH^- + 3 H_2O \longrightarrow 2 [Al(OH)_4]^- + 4[SiO_2(OH)_2]^{2-}$$

$$[Al(OH)_{4}]^{-} + [SiO_{2}(OH)_{2}]^{2-} \xrightarrow{-H_{2}O} \begin{bmatrix} O^{-} & HO \\ | & | \\ HO - Si & -O - Al^{-} - OH \\ | & | \\ O^{-} & HO \end{bmatrix} \xrightarrow{}$$

$$\xrightarrow{polycondensation} \begin{bmatrix} \begin{vmatrix} & & & & & & \\ -Si-O & -Al^{-}-O & -Si-O & - \\ & & & & & \\ 0 & O & O & \\ & & & & & \end{bmatrix}_{n}$$

ゟ **TU**Delft

LIQUID REQUIRED

More sand:

- less liquid in mix
- higher liquid to precursor ratio

Geopolymer Camp, Sain

STRENGTH MEASUREMENTS

STRENGTH OF GRANULES

STRENGTH OF GRANULES

WOOD ASH PERFORMANCE

But:

Do we really have chemical reaction?

XRD

But:

Do we really have chemical reaction?

FESEM BSE

Geopolymer Ca

CONCLUSIONS

- Granulation of geopolymer precursors with spraying liquid activators is feasible
- Peat / wood ash with relatively small amounts of silica and alumina can still produce strong granules
- Operating windows (liquid / solid ratio) are narrow but can be maintained even when the geopolymeric reaction takes place simultaneously
- High amounts of polluted inerts can be added without losing strength
- XRD and FESEM show that geopolymeric binders have formed

COATING OF SELFHEALING PARTICLES

PRINCIPLE
OF
SELFHEALING

Concrete without healing agent

Just cracked

After healing period

Concrete with healing agent

Just cracked

After healing period

Low Shear Pan Granulator

Geopolymer Camp, Saint-Quentin, 2015

Shape of particles to be coated CT Scans

Coated particles

Water tightness

Looching colution	Comple	Ca	Al	Si	
Leaching solution	Sample	(mg/l)	(mg/l)	(mg/l)	
6 M ЦС	Coated core	28.2	15.7	2.4	
6 M HCl	Coating only	3.4	31.3	2	
1 M N-011	Coated core	1.6	85.5	629	
1 M NaOH	Coating only	1.9	248	1123	

7 TUDelft Adhesion to cement paste

Cracking behaviour

CONCLUSIONS

- Geopolymer coatings were obtained by carefully dosing metakaolinite powder and spraying liquid activators
- Coatings are uniform and water tight
- Adhesion to cement paste is excellent
- Cracks developed in the cement paste follow paths connecting the embedded particles
- Coatings will also crack and make selfhealing agents available when required

Induction Growth

Composition of solid precursors

	Chemical composition, %								Particle size				
Sample	CaO	SiO ₂	Al_2O_3	Fe ₂ O ₃	Na ₂ O	K ₂ O	MgO	P ₂ O ₅	TiO ₂	SO ₃	<10% [µm]	<50% [µm]	<90% [µm]
Р	11.6	44.9	10.7	20.1	1.5	2.1	3.0	2.6	0.4	2.0	2.4	17.4	135.6
S	39.5	34.5	9.9	0.5	0.4	0.3	8.1	0.0	1.1	3.4	1.0	10.3	31.9
С	4.9	54.3	22.9	8.0	1.1	1.7	1.8	0.7	1.2	8.0	3.0	30.2	133.7
M	0.1	59.5	32.8	1.4	0.1	0.6	0.1	0.0	1.9	0.0	1.0	8.0	53.1

∦ TUDelft

SODIUM ALUMINATE ACTIVATOR

Waste rinsing bath from aluminium etching:

Al 69-85 g.kg⁻¹
NaOH (free) 17-30 g.kg⁻¹
Si 0.3 g.kg⁻¹
S 2 g.kg⁻¹
Cr 4 mg.kg⁻¹
Others <1 mg.kg⁻¹

Black particles are NaAlO₂ with:

Minor quantities: Mg, Fe, Si, Ca and S (0.5-5%)

Mn, Zn and Cu (\pm 2000 ppm)

Traces: Cr, Pb, Ti, V and Ni (<350 ppm)

ACKNOWLEDGEMENTS

MSc and BSc students
Yvar de Groot
Jan-Jaap Hofman
Rick Weststrate
Juho Yliniemi
Stephan de Koster
Steven Lawant

Arno Keulen, Henk Jonkers, Renée Mors and Gabrie Meesters

