

Durability of Geopolymer Mortars (Fly Ash/Slag-Based) in Sulfate Environments

Never Stand Still

SUPPHATUCH UKRITNUKUN

PROF. CHARLES C. SORRELL A.PROF. ARNAUD CASTEL DR. PRAMOD KOSHY

Content

- Aim of Research Work
- Mechanisms of Sulfate Attack in OPC
- Geopolymer Fabrication Methodology
- Results and Discussion
 - Physical Appearance after Tests
 - Microstructure
 - Compressive Strength
 - Elemental Analysis of Test Solution
 - pH of the solution
 - Linear Expansion

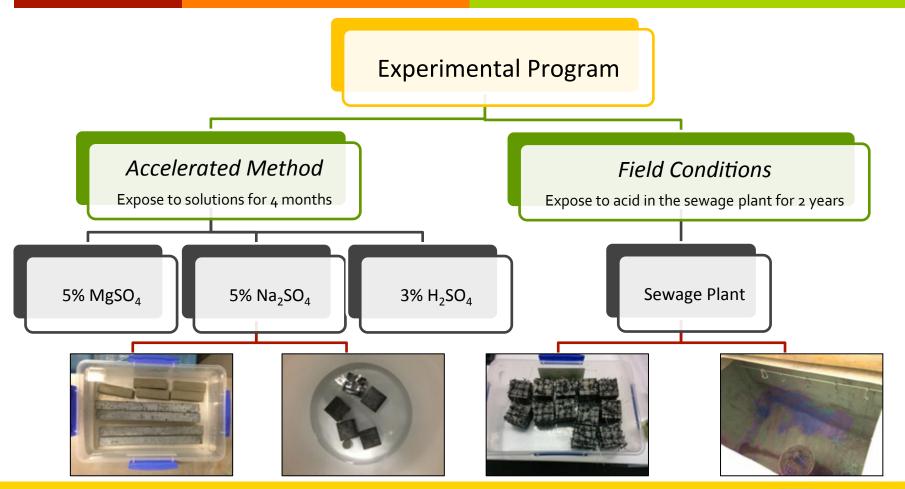
Aim of Research Work

To investigate the deterioration mechanisms of geopolymer mortars (fly ash/slagbased) in sulfate solution (MgSO₄, Na₂SO₄) and acid solutions (H₂SO₄)

Issues

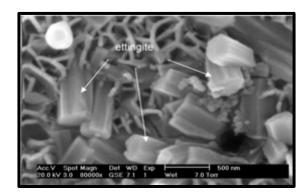
- ◆ Limited understanding of the sulfate exposure in geopolymer systems
- Verification of reliability of ASTM C1012 (Portland cements) for use in geopolymer systems

Sulfate Solutions

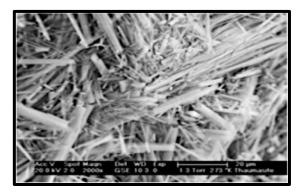

- pH measurement
- Elemental Analysis (ICP)

Paste / Mortar

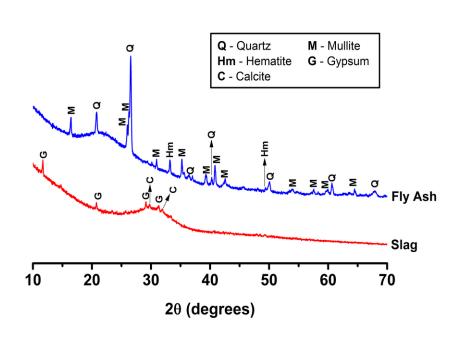
- Microstructural Analysis (SEM)
- Mineralogical Analysis (XRD)
- Compressive Strength Measurements
- Expansion Measurements


Experimental Program

Mechanism of Sulfate Attack in OPC

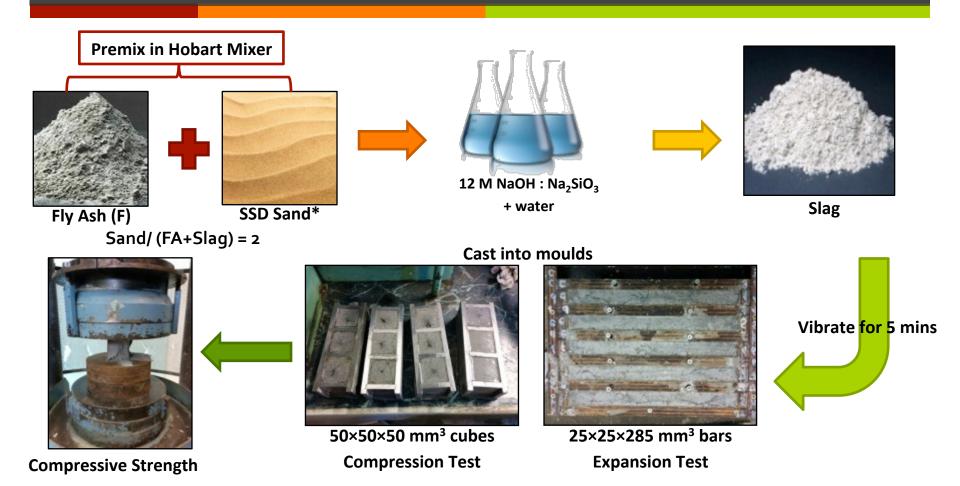

- Sources: Aggressive soils (MgSO₄, Na₂SO₄), sewage plant (H₂SO₄)
- Most Susceptible Phases
 - \bullet CSH, CH, and C₃A (Ca-rich phases)
 - ◆ Forms ettringite, gypsum, and/or thaumasite
 - Resulting expansion causes spalling and cracking of concrete

Ettringite 3CaO·Al₂O₃·3CaSO₄·32H₂O


Gypsum CaSO₄·2H₂O

Thaumasite CaSiO₃·CaCO₃·CaSO₄·15H₂O

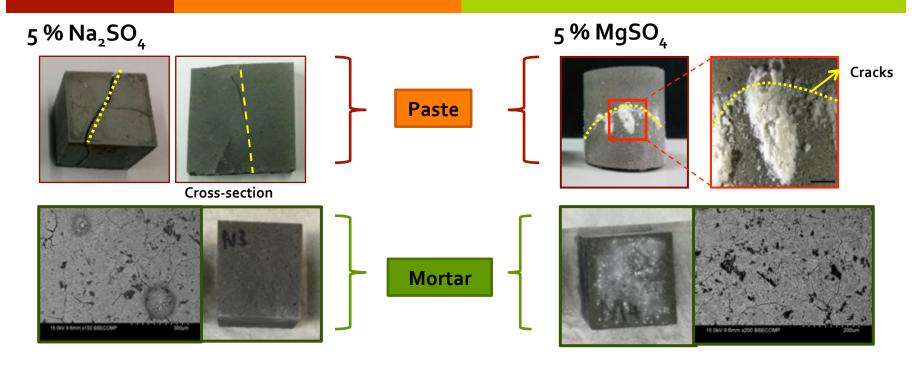
Geopolymer Fabrication Methodology Raw <u>Materials</u>



Compound	Fly Ash (wt%)	Slag (wt%)
SiO ₂	66.1	33.6
Al_2O_3	22.4	13.8
CaO	1.7	41.5
MgO	0.7	5.6
LOI	1.3	0.1

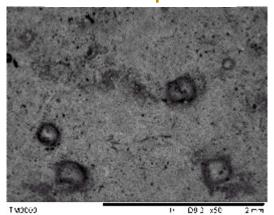
Compound	Grade D Sodium silicate (wt%)	
SiO ₂	29.4	
Na ₂ O	14.7	
H ₂ O	55.9	

Geopolymer Mortar Fabrication

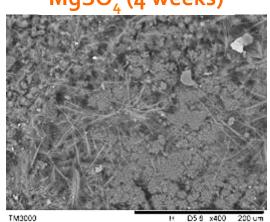

Note:

*SSD = Saturated surface dry
All the ratios are mass ratio

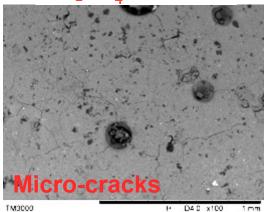
Physical Appearance - Geopolymers

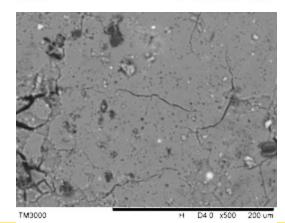


- Pastes cracked in halves within 1 week of exposure in both Na₂SO₄ and MgSO₄
- Mortar remain intact even though micro-cracks were present
- lacktriangle White crystalline precipitate (gypsum) was found in the samples exposed in MgSO $_4$

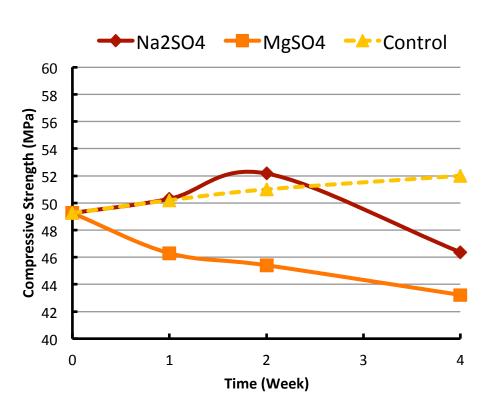


Microstructure

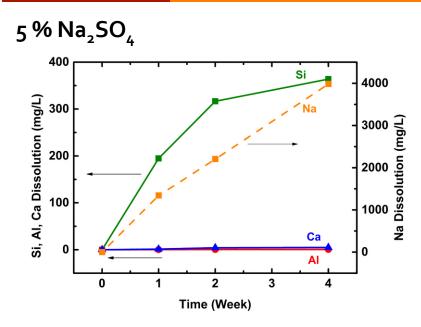

Before Exposure

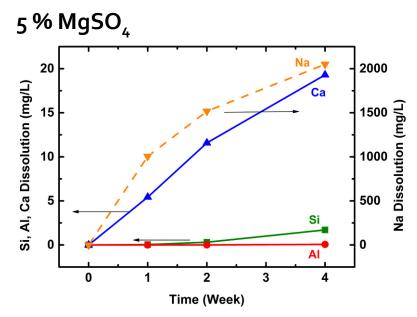

MgSO₄ (4 weeks)

Na₂SO₄ (4 weeks)



TM3000 H D8.2 x50

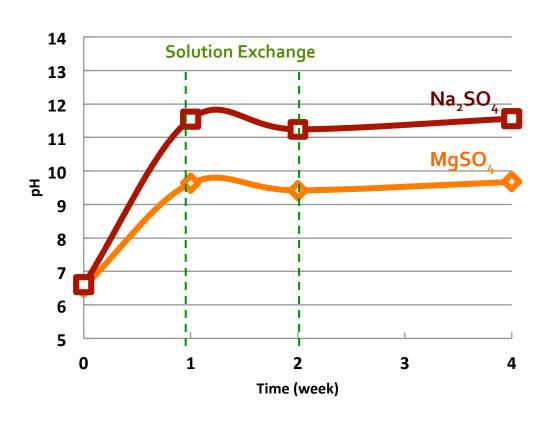

Compressive Strengths


- Control: Gradual increase in strength from 49 to 52 MPa over four weeks
- Na₂SO₄: In first two weeks, strength increases to ~ 52 MPa;
 - Na might be reacting to enhance geopolymerisation which compensates for leaching losses;
- After four weeks, strength falls to 46 MPa:
 - Geopolymerisation ceases; leaching continues causing cracking
- MgSO₄: Compressive strength declines from first week of exposure to 44 MPa
 - Decalcification from the matrix

Elemental Analysis - ICP

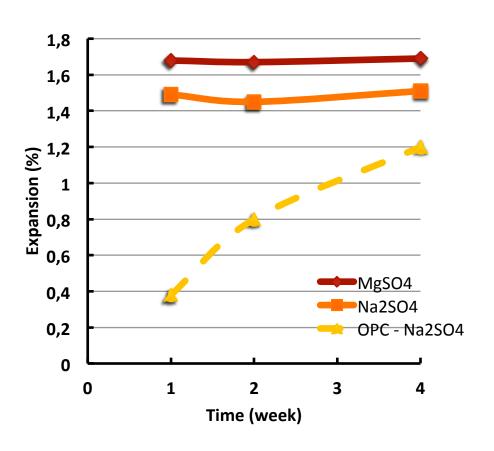
- Significant leaching of Na and Si from alkaline activator
- Aluminosilicate raw materials remain undisturbed (based on FTIR analysis)
- ◆ Leaching of Ca and Al is not noticeable

- Mg decalcifies the Ca-rich phase i.e. generate cracks and leads to the formation of gypsum around the cracks
- Mg replaces Ca-rich phase
- ◆ Leaching of Si and Al is not significant



XRF Analysis of the mortar

	Control	5% MgSO ₄	5% Na ₂ SO ₄
SiO ₂	73.5	75.6	74.1
MgO	0.5	1.0	0.5
Na ₂ O	3.1	2.3	2.7
CaO	5.0	5.0	5.1


pH of the solutions

- Increased leaching of Si and Na in Na₂SO₄ results in rapid increase in pH
- Significant increase in pH in the first week in both test media
- After the solution exchange was done at the end of Week 1, there was a slight drop in pH
- After Week 4, the solution appears to have reached equilibrium and no further increase in pH was observed

Expansion Measurement

5 wt% Na₂SO₄ (4 weeks)

5 wt% MgSO₄ (4 weeks)

Conclusion

Fabrication Method

- High temperature curing: leads to high porosity and voids mortar due to evaporation of unbounded water
- Correct mixing step need to be implemented in order to successfully fabricate dense geopolymer mortar

Sulfate studies

- Presence of Mg decalcify the Ca-rich gel leads to the precipitation of gypsum
- MgSO₄ is more severe than Na₂SO₄: reduction of compressive strength
- No visible cracks but the presence of micro cracks leads to the degradation of strength

