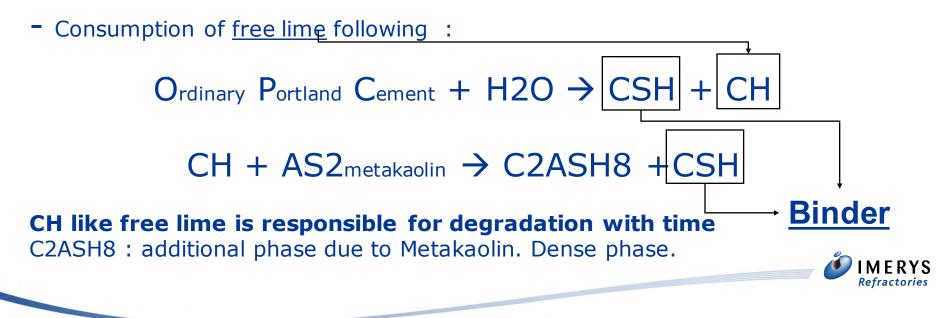
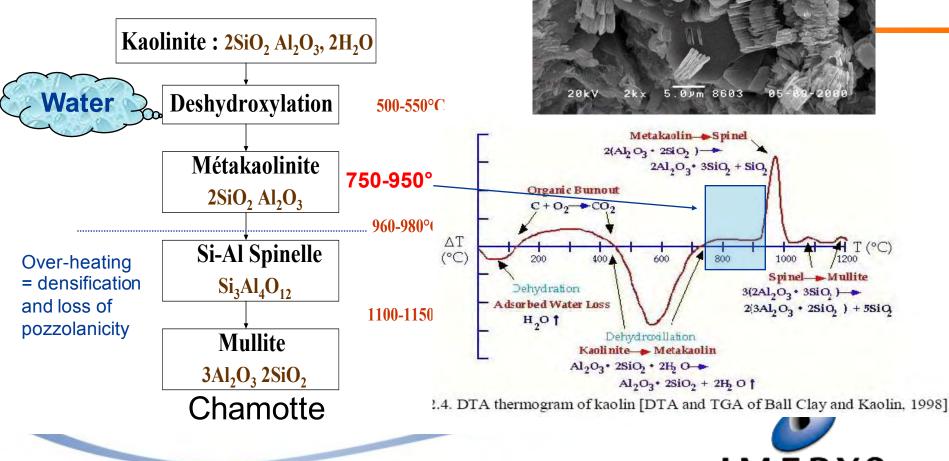

METAKAOLIN

C.DETEUF Metakaolin Product Manager Cyrille.deteuf@imerys.com www.imerys-refractoryminerals.com

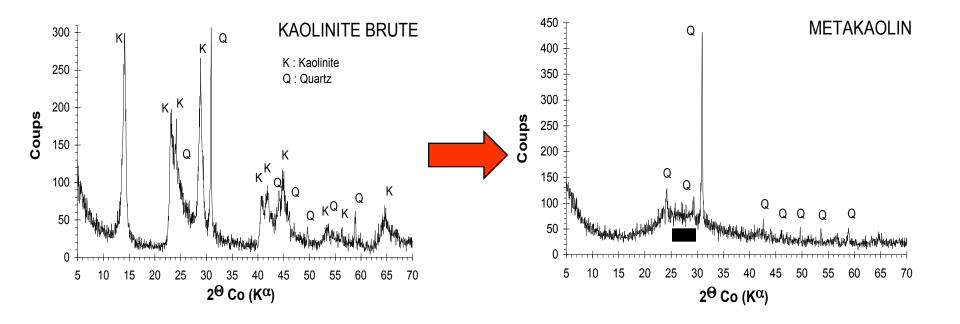
Imerys in a Nutshell



Presence in 47 Countries with more than 250 Industrial Facilities


What is a METAKAOLIN? Usage in cementitious material.

- METAKAOLIN is an Amorphous state of Kaolin or Kaolinic clay obtained by firing the mineral at a temperature between 700 and 950°C.
- Due to this Amorphous state, Metakaolin is able to react with lime in presence of water.
- Metakaolin react with lime released by cement during its hydratation. Lime could also be Natural lime, quick lime ...used in some mortars or renders.
- It's a Pozzolanic material.
 - The Pozzolanic reaction = The reaction with lime (in presence of water)


What is Metakaolin?

Thermal transformation of Kaolin / Kaolinite

XRF show us the transformtion of clay/kaolin in amorphous material Amorphous state is the one of interest for Geopolymer

IMERYS Refractories

Calcination process

- As a basis for the calcination method, we must underlined that
 - Metakaolin quality is directly link to the source of Raw material so to the quarry it comes from
 - Ratio of kaolinite, so the global chemistry is a main parameter for the reactivity of the product
 - The way to prepare the kaolin is also a important parameter for the final result :
 - Pellets for rotary kiln
 - Milling sieving for fine powder entering to flesh Kiln
 - Strict control of calcination is needed (Temperature, time)
 - Control of final product : reactivity, quality of the calcination, reliability, reproductibility

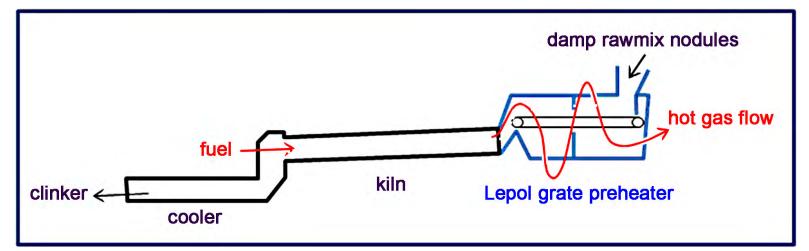
Calcination process

Several kind of way to calcine a clay/kaolin but we can talk about two mains :

Roraty kiln / circulation kiln :

 $d \ll \text{plate} \gg \text{kiln}$ (type Herreshoff) (Imerys US)

d Rotary Kiln : Imerys France (IRMC), Ukraine (VKV), US (CE Mineral)


Flash kiln :

d Torbed calciner (Imerys UK)

d Flash kiln FCB type (IRMC, CLERAC)

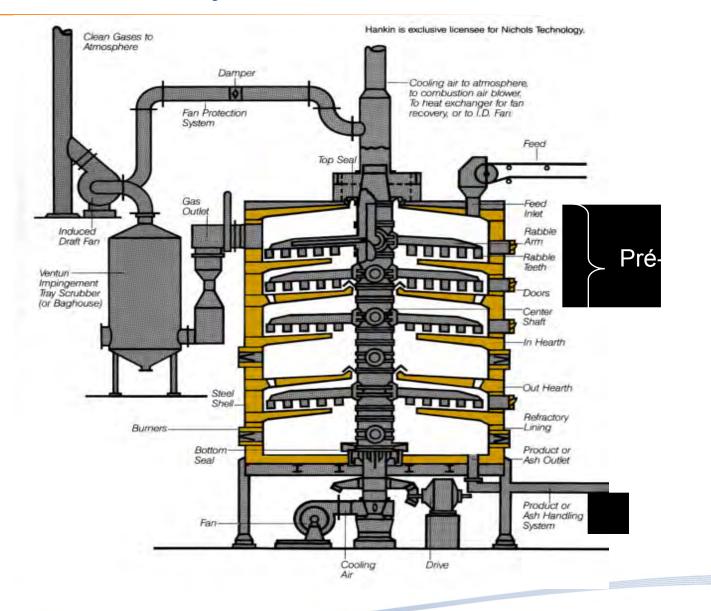
Rotary Kiln : IRMC (France), VKV (Ukraine)

Clérac France Kiln N°3 (L= 34 m, ø 2,5 m) Production 10 T/heure Fuel + Biogas + Saw dust

Rotary Kiln : IRMC (France), VKV (Ukraine)

Avantages:

- -Technology is reliable and robust (similar as cement plant)
- Energy consumption is efficient (800-1200 KWh/t)
- Good outlet rate for production (10-12 tons/h)


Drawbacks :

- Dehydroxylation control after heating : means to have a good knowledge of the process
- Using pellets as inlet material means also that a temperature gradient exist in the product.
- Product have to be milled after calcination so means harder material to mill so fineness is « limited »
- Kiln have to be run continuously so need certain volume or combination with other materials.

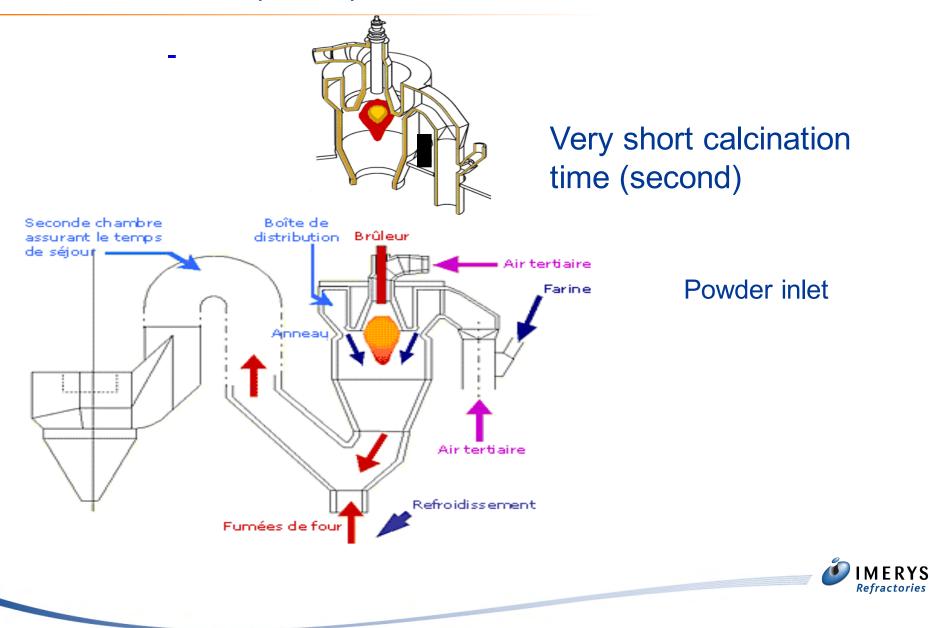
Product available : ARGICAL M1000 (France), MK40 (Ukraine)

Herreshoff kiln : Imerys USA

Herreshoff kiln : Imerys USA

• Avantages:

- -Technology is reliable and robust (similar as rotary kiln)
- Energy consumption is efficient (600-1200 KWh/t)
- Good control of temeprature of calcination


Drawbacks :

- Dehydroxylation control after heating : means to have a good knowledge of the process
- Thermal inertie of the kiln
- Cost of such kiln ; 1,5-2 times more compare to rotary kiln

Product available : METASTAR 501

Flash Kiln : IRMC (France)

Flash Kiln : IRMC (France)

Avantages:

- Really flexible : Temperature is reached quickly
- Control of dehydroxylation of the Kaolin
- Good control of Temperature
- Energy consumption is limited : 400 to 800 KWh/t
- Capacity of kiln adapted by initial design (1tonne/h for IRMC)
- Can produce very fine metakaolin (pre milling).

Drawbacks :

- Complex operational system
- Investment cost not negligeable
- Milled raw material in inlet is needed.

Product available : ARGICAL M1200S

Important parameters for the Metakaolin

- Origin of the raw material :
 - **Primary Kaolin :** coming from the Granitic stone by processing it. Low in impurities (Ti, Fe), « low » in surface specfic value).
 - Secondary Kaolin : Clay deposit, erosion of granite stone. Contain more of impurities (Ti, Fe..). Specific surface is generally higher vs Primary Kaolin (15m²/g and more).
- Chemistry of the Kaolin
 - The more the Alumine the better is for the reactivity. Alumina content closer to pure Kaolinite increase the amorphous rate of the Metakaolin.
- PSD and calcination :
 - · Reactivity is link to the fineness of the material
 - BUT the calcination process and the nature of the raw material can modify the reactivity.
 - A poor Metakaolin (low reactivity) will not bring much more reactivity only by milling. The raw material influence is high.

Important parameters for Metakaolin for Geopolymer

Which is the best Metakaolin for a Geopolymer!

For Geopolymer technology, the subject is still today under investigation within Imerys!

We can anyway point out couple of point :

- Alumina content is of importance as it brings us the Al/Si ratio and good combination with Silicate.

- The more the kaolinite... the more the metakaolinite you will get. Amorphous ratio is important for reactivity

- influence/control of calcination process

- PSD is also a parameter that can influence the reactivity

Important parameters for Metakaolin for Geopolymer

All metakaolin can be use in geopolymer system as reactants! It will give/bring a certain :

- Setting time
- Rheology
- Resistance
- ...

But the mains points are your parameters. What you are looking to do! So please don't ask me a Metakaolin for Geopolymer! Better explain what you are looking to do!

And neither forget that Metakaolin is only on part of the Binding system!

Name	Calc. Type	Reactivity (Chapelle test)	Colour	BET (m²/g)	Fineness	Cost Index
Metastar 501 (US) d50 = 1µm	Hereshoff	1400	+++	14		5
Argical M1200S (F) d50 = 1,5µm	Flash	1370	++	23		2
MK 36 (Ι) d50 = 6μm	Rotary	1200	++	19	Finer	1,5
Argical M1000 (F) d50 = 10µm	Rotary	1150	++	19		1
MK 40 (Ukr) d50 = 20µm	Rotary	1100	+	15		1

Thank you for your attention

C.DETEUF Metakaolin Product Manager <u>Cyrille.deteuf@imerys.com</u> www.imerys-refractoryminerals.com

