

Dipartimento di Ingegneria Industriale

Direct and indirect 3D printing with geopolymers

<u>G. Franchin¹</u>, H. Elsayed¹, P. Scanferla¹, A. De Marzi¹, F. Gobbin¹, L. Zeffiro¹, A. Conte¹, A. Italiano², P. Colombo^{1,3}

 ¹ Industrial Engineering Dept., University of Padova, Italy
² Desamanera, Borsea (RO), Italy
³ Dept. of Material Science and Engineering, The Pennsylvania State University, PA, USA

Heads: Prof. Paolo Colombo and Prof. Enrico Bernardo

Research topics:

- Additive manufacturing of ceramics and glasses
- Highly porous ceramic structures and foams
- Polymer derived ceramics and geopolymers
- Biosilicates

Indirect 3D printing for ceramics

A. Zocca, P. Colombo, C.M. Gomes, J. Guenster., "Additive Manufacturing of Ceramic-Based Materials," J. Am. Ceram. Soc., 98 (2015) 1983–2001

Direct 3D printing for ceramics

N. Travitzky et al., Additive Manufacturing of Ceramic-Based Materials, Adv. Eng. Mater., 16 (2014) 729–754

Direct and indirect AM - pros and cons

Direct AM

PROS

- better adhesion between layers
- rheology optimisation
- higher densities
- higher spatial flexibility

CONS

- limited by reaction times
- limited complexity without support material
- heat development can cause issues

PROS

- higher speeds
- simpler rheology requirements
- higher material and design flexibility

Indirect AM

- filler can adsorb heat

CONS

- poorer adhesion between layers
- higher residual porosity
- lower spatial flexibility
- complex powder mixture required to assure flowability:

$$H = \frac{\rho_{\text{Tapped}}}{\rho_{\text{Bulk}}}$$

FEATURES:

- Cheap and sustainable raw materials (wastes)
- room T consolidation
- fast setting reactions
- low CO₂ emissions during production
- dense gel-like structure with intrinsic pseudo-plasticity

CHALLENGE: 4D PRINTING

DESAMANERA

Printing mechanism

Original binder

- Magnesium oxide in the powder bed
- Clorurate solution as liquid binder
- adequate mechanical properties
- high residual porosity
- non-hydraulic cement

Replica of the industrial process

Validation of the lab procedure

- original binder \rightarrow same density and

mechanical properties as printed parts

- constant volume of binder

Samples: 10x1.5x1.5 cm³

Na-based MK-750 geopolymer

Water content optimisation

 \rightarrow influence on reactivity, wettability, rheology

Water content not optimised

Original binder

Geopolymer

- Interface between layers still visible
- lower residual porosity

Original binder

Geopolymer

Interface between layers

\rightarrow anisotropic behaviour

Binder	σ _{COMPR} transverse (MPa)	<u>σ_{Geo}</u> σ _{Original}	σ _{COMPR} longitudinal (MPa)	<u>σ_{Geo}</u> σ _{Original}	Mean open porosity (vol%)
Original	1.58 ± 0.11	415%	2.13 ± 0.05	772%	43.8 ± 2.1
Geopolymer	6.56 ± 2.16		16.45 ± 3.50		30.4 ± 2.5

- Significant increase of mechanical properties and durability
- Significant decrease of residual porosity

- Need of adapting the printer for the new binder

Direct AM of geopolymers

Nozzle size: 100 to 1500 µm X & Y axis resolution: 120 µm Z axis resolution: 4 µm

CHALLENGE

thin walls and spanning features

- \rightarrow optimisation of the ink rheology
- \rightarrow use of additives

Ink features

- Formation of 3D poly(sialate-siloxo) network \rightarrow viscosity increase with time
- Intrinsic pseudo-plastic behaviour + additives
- Limited working time

Ink features

strain sweep test, strain ramping logarithmically from 0.001% to 100% at 1Hz frequency

- physical, reversible gel formation
- initial **yield stress** \rightarrow prevents spontaneous flow

extrusion

→ low deflection for printed overhang structures or spanning features

Spanning distance: 2 mm Filament diameter: 0.84 mm

```
Deflection ~0.25 mm
```

Ink development and optimisation

Mix optimisation

Regular structure No sagging of filaments → increasing spanning lengths Good interface between filaments

Increased complexity

Proposed application: filters

Experimentation on different inks

K-based geopolymer

leucite formation after heat treatment

Fly ashes addition

+ pseudo-plasticiser, retarding agent

Experimentation on different inks

Na-based geopolymer

nepheline formation after heat treatment

Porous struts **Hierarchical** porosity

- Geopolymers have been used as binders for indirect AM
- Geopolymer inks have been printed via DIW

FUTURE GOALS:

- increase repeatability
- widen materials window

Dipartimento di Ingegneria Industriale

Thank you for your attention!