Potential Utilization of Geopolymers for Oil Well Cementing Operations

Dr. Mahmoud Khalifeh
Dept. of Petroleum Engineering
University of Stavanger
uis.no

7/7/16
Outlines

- Past, Present, and Future of Oil Wells in Norway
- Geopolymers as an Alternative Material
- Placeability - Rheological Determination
- Physical Observation
- Properties of the Geopolymers
- X-ray Crystallography
- Microstructure Characterization
- Long-Term Durability Analysis
- Summary
Materials for Oil Well Cementing

- Two new materials were developed:
 - Aplite-based geopolymers
 - Norite-based geopolymers
Oil Wells in Norway - Since 1966 until June 2015

Total No. of drilled wells
5579

No. Of development wells
4037

No. Of exploration wells
1542

Potential Utilization of Geopolymers for Oil Well Cementing Operations. By: Dr. M. Khalifeh
Oil Wells

Potential Utilization of Geopolymers for Oil Well Cementing Operations. By: Dr. M. Khalifeh
Alternative Plugging Materials

Portland Cement as the Prime Material

- Concerns regarding Portland cement
 - Shrinkage
 - Possible gas influx (permeability)
 - Instability at high temperatures
 - Instability in corrosive environments
 - Well conditions (rock formation type, thermal cycling, etc.)
Alternative Material, Norsok-D010

- Characteristics of a suitable alternative material:
 - Ensure bonding to steel,
 - Impermeable,
 - Non-shrinking,
 - Able to withstand mechanical loads/impact,
 - Resistance to chemical/substances (H₂S, CO₂ and hydrocarbons),
 - Not harmful to the steel tubulars integrity,
 - Provide long-term integrity (eternal perspective).
Alternative Plugging Materials

<table>
<thead>
<tr>
<th>Type</th>
<th>Material</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cements / ceramics (setting)</td>
<td>Portland cement, aluminosilicate, borate cements, hardening</td>
</tr>
<tr>
<td>B</td>
<td>Grouts (non-setting)</td>
<td>Sand or lime, bentonite, barite plugs, calcium carbonate</td>
</tr>
<tr>
<td>C</td>
<td>Thermosetting polymers and composites</td>
<td>Resins, epoxy, polyester, acrylics, thermosets, fibre reinforcements</td>
</tr>
<tr>
<td>D</td>
<td>Thermoplastic polymers and composites</td>
<td>Polyethylene, polypropylene, polylamide, PTFE, Peek, PMMA, PC and polycarbonate, including fibre reinforcements</td>
</tr>
<tr>
<td>E</td>
<td>Elastomeric polymers and composites</td>
<td>Natural rubber, neoprene, nitrile, EPDM, FKM, FFKM, silicone rubber, polyurethane, PUE and swelling rubbers, including fibre reinforcements</td>
</tr>
<tr>
<td>F</td>
<td>Formation</td>
<td>Claystone, shale, salt.</td>
</tr>
<tr>
<td>G</td>
<td>Gels</td>
<td>polymer gels, polysaccharides, starches, silicate-based gels, clay-based gels, diesel / clay mixtures</td>
</tr>
<tr>
<td>H</td>
<td>Glass</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Metals</td>
<td>Steel, other alloys such as bismuth-based materials</td>
</tr>
</tbody>
</table>
Geopolymers

- How do I produce the geopolymers?
Placeability - Consistency

- Reaction
 - Dissolution
 - Coagulation
 - Polycondensation

- RAS

Atmospheric consistometer of the aplite-based geopolymers with different mix ratios.

Atmospheric consistometer of the aplite-based geopolymers with different dosages of retarder.
Shear stress vs. shear rate for Na- and K-containing aplite-based geopolymers at ambient condition.

Shear stress vs. shear rate for fly ash- and aplite-based geopolymers at ambient condition.
Physical Observations

- Color changes
 - Chemical indicator of the geopolymers

- Cracks
 - Water evaporation

(a) cured at ambient pressure and temperature for 7 days,
(b) cured at 87°C and ambient pressure for 7 days, and
(c) cured at 87°C and ambient pressure for 365 days.
Properties of the Geopolymers - UCS

- The aplite-based geopolymers cured at ambient pressure and 87°C.
 - 6M KOH

Potential Utilization of Geopolymers for Oil Well Cementing Operations. By: Dr. M. Khalifeh
Properties of the Geopolymers - UCS

- Retarder Effect
 - Similar compressive strength
 - Dissolution

Uniaxial compressive strength of the aplite-based geopolymers cured at 90°C and 2000 psi.
Properties of the Geopolymers - CCM

- Estimated dynamic mechanical properties of the aplite-based geopolymers at 87°C and 1000 psi by using MPro.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Slurry Density (g/cc)</th>
<th>Poisson’s Ratio</th>
<th>Bulk Modulus (kpsi) [GPa]</th>
<th>Young’s Modulus, E (kpsi) [GPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.90</td>
<td>0.28</td>
<td>746 [5.14]</td>
<td>1063 [7.33]</td>
</tr>
<tr>
<td>8</td>
<td>1.93</td>
<td>0.15</td>
<td>404 [2.78]</td>
<td>107 [0.74]</td>
</tr>
<tr>
<td>9</td>
<td>1.89</td>
<td>0.28</td>
<td>1057 [7.28]</td>
<td>1371 [9.45]</td>
</tr>
</tbody>
</table>

- Measured dynamic mechanical properties of the aplite-based geopolymers at 90°C and 2000 psi by using triaxial compression cell.

<table>
<thead>
<tr>
<th>Mix design</th>
<th>Bulk modulus</th>
<th>Young’s modulus</th>
<th>Poisson’s ratio</th>
<th>Axial creep (%) [t=7021 min]</th>
<th>Radial creep (%) [t=7021 min]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kpsi [GPa])</td>
<td>(kpsi [GPa])</td>
<td>[t=7021 min]</td>
<td>[t=7021 min]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>241.0 [1.66]</td>
<td>207.2 [1.43]</td>
<td>0.016</td>
<td>2.09</td>
<td>0.86</td>
</tr>
<tr>
<td>2*</td>
<td>222.3 [1.53]</td>
<td>238.0 [1.65]</td>
<td>0.015</td>
<td>2.00</td>
<td>0.88</td>
</tr>
<tr>
<td>3</td>
<td>221.2 [1.53]</td>
<td>213.1 [1.47]</td>
<td>0.018</td>
<td>2.23</td>
<td>1.03</td>
</tr>
</tbody>
</table>

*Average values from two tests.
Properties of the Geopolymers

- **Ultrasonic Cement Analyzer (UCA)**
 - Custom algorithms shall be developed.

- **pH measurements**
 - Slurry’s pH value: 14
 - pH value of the geopolymer: 11.5-12.5

- **Shrinkage determination**
 - Autogenous shrinkage < 1%
 - Drying shrinkage ≈ 5%

- **Permeability measurements**
 - 0.007-0.040 micro-Darcy
Additional Studies

- Besides the previously mentioned investigations:
 - Effect of curing temperature:
 - Ambient temperature
 - Elevated temperature
 - Effect of activator:
 - Alkali solution
 - Alkali silicate solution
 - Alkali solution and alkali silicate solution
 - Influence of GGBFS:
 - Early strength development:
 - Amorphous content
 - Calcium and Magnesium content
 - C-S-H and C-A-S-H
X-ray Crystallography of the Geopolymers

- Aplite rock-based geopolymers K-silicate solution to alkali solution ratio of 1.

XRD pattern of Na-containing geopolymer cured at ambient temperature for 28 days.

XRD pattern of K-containing geopolymer cured at ambient temperature for 28 days.

Potential Utilization of Geopolymers for Oil Well Cementing Operations. By: Dr. M. Khalifeh
Microstructure Analysis of the Geopolymers

- Aplite rock-based geopolymers

(Top left) BSE image and elemental EDX maps for the most abundant elements in the geopolymer: Si, Al, O, Ca, Fe, Na, K, and Mg.
Long-Term Durability of the Geopolymers

- Aplite rock-based geopolymers
 - Ageing temperature: 100°C
 - Ageing pressure:
 - brine and crude oil: 7250 psi
 - \(H_2S \): 145 psi
Long-Term Durability of the Geopolymers

- Aplite rock-based geopolymers
 - Ageing temperature: 100°C
 - Ageing pressure:
 - brine and crude oil: 7250 psi
 - \(H_2S\): 145 psi

<table>
<thead>
<tr>
<th></th>
<th>Ageing Pressure (MPa)</th>
<th>1-month</th>
<th>3-months</th>
<th>6-months</th>
<th>12-months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude oil</td>
<td>50</td>
<td>-0.4±0.2</td>
<td>0.0±0.3</td>
<td>-0.9±0.1</td>
<td>-0.3±0.1</td>
</tr>
<tr>
<td>Brine</td>
<td>50</td>
<td>4.3±0.2</td>
<td>3.9±0.4</td>
<td>3.6±0.2</td>
<td>3.0±0.7</td>
</tr>
<tr>
<td>(H_2S)</td>
<td>1</td>
<td>3.1±2.0</td>
<td>1.1±1.0</td>
<td>-7.0±2.0</td>
<td>-10.5±3.0</td>
</tr>
</tbody>
</table>

Measured weight changes (%) of the geopolymers.

<table>
<thead>
<tr>
<th></th>
<th>Ageing Pressure (MPa)</th>
<th>1-month</th>
<th>3-months</th>
<th>6-months</th>
<th>12-months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude oil</td>
<td>50</td>
<td>-0.1±0.6</td>
<td>-0.4±0.7</td>
<td>*</td>
<td>-1.0±1.5</td>
</tr>
<tr>
<td>Brine</td>
<td>50</td>
<td>7.0±1.0</td>
<td>5.0±2.0</td>
<td>6.5±1.5</td>
<td>3.5±1.5</td>
</tr>
<tr>
<td>(H_2S)</td>
<td>1</td>
<td>5.4±1.0</td>
<td>11.0±4.0</td>
<td>4.0±2.0</td>
<td>0.9±0.6</td>
</tr>
</tbody>
</table>

Measured volume changes (%) of the geopolymers.
Summary

- The particle size of the source material significantly affects the reactivity and properties of the geopolymers.
- Na-containing geopolymeric systems show a markedly higher viscosity than potassium-containing systems.
- The setting time could effectively be adjusted by the addition of retarders.
- A lower concentration of alkali solution can result in a higher strength for geopolymer than a higher concentration of alkali solution when combinations of Na- and K-containing systems are used as activators.
A higher curing temperature of the mixes with higher concentration of alkali solution may activate a consecutive reaction, which could reduce the strength of geopolymers.

The X-ray patterns indicated the formation of the zeolite phase for potassium-containing systems.

Long-term durability experiments show a further reaction after six months of curing takes place and increases the compressive strength and tensile strength of the aplite-based geopolymers that were exposed to crude oil and brine.
The long-term exposure of geopolymers to H$_2$S deteriorates both the compressive strength and tensile strength of the geopolymers. After six months of curing, as a result of the consecutive reaction, phase(s) is formed which increases the compressive and tensile strengths while interacting with H$_2$S.

Low permeability, favorable compressive strength, high pH value, and low shrinkage factor of geopolymers are key factors that could indicate a bright future for the geopolymer technology.
List of Publications

Acknowledgement

I gratefully acknowledge the Research Council of Norway, ConocoPhillips, Det norske oljeselskap, Statoil, Wintershall, and Lundin Norway AS for financing the work through the research centre DrillWell - Drilling and Well Centre for Improved Recovery, a research cooperation between IRIS, NTNU, SINTEF, and UiS.

A special thanks to European Synchrotron Radiation Facility (ESRF) for provision of synchrotron beam time and technical assistance from the SNBL-consortium.