

Geosil – ready to use alkali silicates for Geopolymers

Jörg Lind Wöllner GmbH Wöllnerstrasse 26 67065 Ludwigshafen Germany joerg.lind@woellner.de

Dr. Martin Leute Wöllner Austria GmbH Fabriksstrasse 4-6 8111 Gratwein-Straßengel Austria martin.leute@woellner.at

Content **Brief introduction Woellner Group** Production route, properties and basics of water glass **Geosil & Betol products Application with Geosil Binder Summary**

Introduction

- Owned by Dr. Eduard Wöllner family foundation
- 120 years of experience (founded in 1896)
- Head Office in Ludwigshafen / Germany
- Main product groups:
 - industrial silicates
 - raw materials and additives for paints, plasters and construction materials
 - process chemicals for industrial water circuits
- Approx. 140 employees
- Annual turnover approx. 50 million Euros

Production Sites

<u>Ludwigshafen</u>: headquarter and production site

Bad Köstritz: production site

<u>Gratwein-Straßengel</u>: sales department and production site

2 Waterglass

- not distinct stoichiometric chemical substances
- no specific chemical formula
- glasses or aqueous solutions of glasses

2

weight ratio:

$$WR = \frac{\text{wt.\% SiO}_2}{\text{wt.\% M}_2\text{O}}$$

molar ratio: $MR = \frac{\text{mol SiO}_2}{\text{mol M}_2O}$

Molar Ratio ⇔ Weight Ratio

sodium silicate: Molar Ratio = 1,032 • Weight Ratio

potassium silicate: Molar Ratio = 1,566 • Weight Ratio

2 Basics of alkali silicates

technical significant liquid silicates:

Sodium silicate: molar ratio 1,7-4

Potassium silicate: molar ratio 0,5 – 4

Lithium silicate: molar ratio 2,5-5,0

Suitable silicates for Geopolymer:

Sodium silicate: molar ratio 1,7 - 2,0

Potassium silicate: molar ratio 1,5-2,3

	Molar ratio SiO ₂ : M ₂ O	"Old" Classification (Handling)	Dangerous Goods Classification (Transport)	CLP- Classification
_	> 3,2 (conc. < 40 %)	none	none	none
	> 3,2 (conc. > 40 %)	Xi irritant R 36/38	none	Warning Skin Irrit. 2 H315 Eye Irrit. 2 H319
	> 2,6 ≤ 3,2	Xi irritant R36/38	none	Warning Skin Irrit. 2 H315 Eye Irrit. 2 H319
Ūn ≫	> 1,6 ≤ 2,6	Xi irritant R38, 41	none	Danger Skin Irrit. 2 H315 Eye Dam. 1 H318
Ūn ≫∰	≤ 1,6	C corrosive R34	Cl. 8 / VGr. II	Danger Skin corr. 1B Eye Dam. 1 H314 Met. corr. 1 H290

Name		Туре	
1	Geosil 34417	Sodium silicate	
2	Geosil 54217	Sodium / potassium mixed silicate	
3	Geosil 14515	Potassium silicate	
4	Geosil 15517	Potassium silicate	
5	Betol VP6079	Alumosilicate based hardener	
6	Betol H31	Alumosilicate based hardener	
7	Geosil 14423	Potassium silicate	

- ready formulated mixtures
- quality controlled process
- userfriedly no hydroxide handling
- high purity of raw materials
- reproduceable & controlled production process
- stable solution
- worldwide shipping possible
- guarantee of chemical composition
- long shelf life

Application with Geosil® Binder

Binder dominant

- geopolymer concrete
- geopolymer adhesive
- geopolymer mortar
- Inorganic foam
- toxic waste immobilisation
- composites
- steel coating

Filler dominant

- acoustic boards
- thermal insulation boards
- fire protection boards
- refractory bricks
- pavement stone
- facade elements
- core binder foundry
- Arts & decoration

Binder dominant

Filler dominant

desert sand geopolymer bonded

Geopolymer bonded MgO

GP lightweight epoxy composite

Summary: customer questions

- Which raw material to choose?
- Which alkali silicate to choose?
- Which aluminium silicate to choose?
- Which filler/other raw materials to choose?
- How to avoid crack formation?
- How to avoid shrinkage?
- How to control cure process?
- How to find the right mixture?
- How to develop 1K System?
- Which standard to use?
- How to understand chemical reactions?

Summary: how Wöllner can support you

- "Geosil" Binder ready to use activator solution
- Hardener for Geosil Binder
- customized products (blends, modified products)
- Additives stable at high pH-values (thickener, dispersingagent, hydrophobic agent)
- Worldwide logistic for all products
- Individual technical support for customers
- Worldwide network with international partners

The partner by your side

