Phosphate-based Geopolymer

a review of recent literature

Joseph Davidovits
#8 Phosphate-based geopolymer

In acidic medium

phosphoric acid H₃PO₄
\[
\text{Al}_2\text{O}_3 + 2\text{H}_3\text{PO}_4 \implies 2\text{AlPO}_4 + 3\text{H}_2\text{O}
\]

\[
\text{(MK) Si}_2\text{O}_5\text{Al}_2\text{O}_2 + 2\text{H}_3\text{PO}_4 = \implies 2\text{AlPO}_4 + 2\text{SiO}_2 + 3\text{H}_2\text{O}
\]

Geopolymer Book: Section 13.6 AlPO\textsubscript{4}-based geopolymers

... AlPO\textsubscript{4} species: variscite AlPO\textsubscript{4}·2H\textsubscript{2}O, metavariscite AlPO\textsubscript{4}·2H\textsubscript{2}O and berlinite AlPO\textsubscript{4}. 100–300°C, variscite / metavariscite lose their water molecules to form \(\alpha\)-berlinite (trigonal AlPO\textsubscript{4}) stable phase up to 540°C, and > 550°C onwards tetragonal \(\beta\)-berlinite.

AlPO\textsubscript{4}-berlinite is **isostructural** with quartz SiO\textsubscript{2}, i.e. same molecular structure. Upon heating, same transitions as quartz, into tridymite and cristobalite equivalent molecular structures.

Transition from one form to the other is readily followed by X-Ray powder diffraction analysis.
Polymeric structures of AlPO₄-Geopolymers

⇒ Cross-linked (P-O-Al-O)n poly(alumino-phospho) chains

AlPO₄-berlinite (isostructural to quartz)

AlPO₄-tridymite/cristobalite
Synthesis and structure characterization of geopolymeric material based on metakaolin and phosphoric acid

Cao, D., Su, D., Lu, B., Yang, Y.

aSchool of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
bInstitute of Materials, South China University of Technology, Guangzhou 510641, China

Abstract

A geopolymer material based on MK and phosphoric acid was synthesized from metakaolin at room temperature. The product of the geopolymerization has a polymeric Si-O-Al-O-P three-dimensional structure.

Material structure and geopolymerization mechanism were investigated using X-ray diffraction (XRD), infrared (FTIR) spectroscopy, and 29Si and 27Al magic angle spinning nuclear magnetic resonance (NMR). The XRD pattern of the obtained polymers is essentially amorphous.
Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials

ANSTO, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234, Australia

<table>
<thead>
<tr>
<th></th>
<th>Si/Al</th>
<th>Na/Al</th>
<th>P/Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK / Na-PSS</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>MK / Phospho</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Cast in sealed molds, kept at RT for 2 hours, 60°C for 24 hours. Removing the seals and kept at RT: Na-PSS demolded after 4 days, MK/Phospho after 14 days.
After Perera et al. (2008)

Table 2 Physical and mechanical properties of the materials

<table>
<thead>
<tr>
<th></th>
<th>MKGP</th>
<th>MKSGP</th>
<th>MKP</th>
<th>MKSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD (g/cm³)</td>
<td>1.46</td>
<td>1.60</td>
<td>1.82</td>
<td>1.89</td>
</tr>
<tr>
<td>OP (%)</td>
<td>20</td>
<td>20</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CCS (MPa)</td>
<td>72 (5)</td>
<td>70 (6)</td>
<td>146 (17)</td>
<td>96 (10)</td>
</tr>
<tr>
<td>Shrinkage(^a) (%)</td>
<td>+0.7</td>
<td>+0.6</td>
<td>4.0</td>
<td>3.9</td>
</tr>
</tbody>
</table>

One standard deviation listed within brackets

\(^a\) Diametral shrinkage wet to dry on a wet basis, + indicates expansion
Note

Preparation of phosphoric acid-based porous geopolymers

Liu Le-ping, Cui Xue-min*, Qiu Shu-heng, Yu Jun-li, Zhang Lin

School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China

MK + H₃PO₄ 85% + Al powder for expansion and Al₂O₃ powder;
5 h at 80°C in sealed mold.

Excellent thermal stability up to 1400°C, porosity 85%, compressive strength ca. 7 MPa.
Phosphate-based geopolymers, with very low dielectric loss could be used as an insulated encapsulating material (for electronic devices): heat treatment at 300°C is lower than the usual temperatures for common packaging of ceramic materials.

The $2.4\text{H}_3\text{PO}_4\text{–Al}_2\text{O}_3\text{–}2\text{SiO}_2$ geopolymers are heat-resistant to approximately 1500°C. Therefore, the phosphoric acid geopolymers might serve as potential high-temperature packaging or encapsulating materials.
sealed container, 2 hours room t° before 60°C 24 hours, calcined clay + H₃PO₄ 85% with varying Si/P ratio. Best is Si/P = 2.25, equiv. to P/Al=1.
Phosphate-based geopolymer: Formation mechanism and thermal stability

Yan-Shuai Wanga, Jian-Guo Daia,*, Zhu Dingb, Wei-Ting Xua

aDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
bSchool of Civil Engineering, Shenzhen University, 518060, China

MK reaction with monoaluminum phosphate (MAP): Al(H\textsubscript{2}PO\textsubscript{4})\textsubscript{3}, powder in fact mixture of [Al(H\textsubscript{2}PO\textsubscript{4})\textsubscript{3}, AlPO\textsubscript{4}] and Al\textsubscript{2}(HPO\textsubscript{4})\textsubscript{3}.
Influence of the molar concentration of phosphoric acid solution on the properties of metakaolin-phosphate-based geopolymer cements

Hervé K. Tchakoute, Claus H. Rüscher, Elie Kamseu, Fernanda Andreola, Cristina Leonelli

24 hours room t° before 60°C 24 hours,
MK + H₃PO₄ of different concentration: molar 2 to 12 M good results, strength varying from 36 MPa to 93 MPa, whereas with 14 M = 0 MPa
Like Perera’s paper (2008), ageing 24 h at room T° and cure at 60°C, 24 h
- Na-poly(sialate) geopolymer: 63 MPa
- Phosphate-based geopolymer: 94 MPa
Polyimide fiber is not alkali resistant, yet acid-resistant. Good candidate for PH-based geopolymer composite.

Addition of 1.5% weight increase the Flexural strength from 10 MPa to 40 MPa.
Superhigh strength of geopolymer with the addition of polyphosphate

Yan-Guang Wua, Sui-Sui Xiea, Yun-Fei Zhanga,\textdagger, Fei-Peng Dua,\textdagger, Chun Chengb

a School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
b Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Method to enhance the compressive strength of GP Na-poly(sialate) by addition of aluminum dihydrogen triphosphate (ATP).

Compressive strength reaches 160 MPa with an optimum 1.0 wt% ATP, i.e. 108% increase.

Fig. 1. Chemical structure of ATP.