

EVALUATION OF REINFORCING EFFICIENCY OF TEXTILE MESHES IN GEOPOLYMER MORTAR BASED COMPOSITE

Presented by: Hiep Le Chi

Co-workers: Su Le Van, Lukaš Voleský, Pavel Kejzlar, Iva Dufková, Vladimir Kovačič, Totka Bakalová, Petr

Louda, Anna Kavánová.

Department: Material Science

GeopolymerCamp 2019

Outline

- Introduction
- Materials & Sample Preparation
- Experimental Results
- Conclusions

Introduction - Textile reinforced concrete

- Repairing and/or strengthening the structural elements of old structures.

Materials & Sample Preparation

Chemical composition of geopolymer cement provided by Ceske Lupkove Zavody, Czech Republic.

Al203	41.10
SiO2	54.10
K20	0.80
Fe203	1.10
TiO2	0.80
MgO	0.18
CaO	0.13
LOI (loss of ignition) %	2.2

Geopolymer & sodium alkali solution micro-silica sand: ≤ 0.063 mm

Chemical composition of silica fume as follow (wt.%): SiO2 – 90, CaO – 0.8, MgO – max. 1.5, Al2O3 – max. 1, Na2O – 0.5

Basalt meshes provided by Frisiverto S.R.O company, Czech Republic

Tanaila atrangth (MDa)	Lengthways	1335	1068	1141
Tensile strength (MPa)	crossways	1251	1347	1279
Flooration (0/)	Lengthways	1.86	1.61	1.62
Elongation (%)	Crossways	1.50	1.63	1.54
Motoviol	Lengthways	2400 Tex	2400 Tex	2400 Tex
Material	Crossways	2400 Tex	2400 Tex	2400 Tex
Binder yarn		PP 110tex		
Density (kg/m³)		2.75		

Carbon mesh provided by Frisiverto S.R.O company, Czech Republic

Net size of 10x15 mm

Net size of 22x22 mm

Net size of 34x34 mm

Material characteristic		10x15	22x22	34x34
Tensile strength (MPa)	Lengthways	2551	2531	2544
	crossways	2847	2841	2720
Elongation (%)	Lengthways	1.17	1.71	1.47
	Crossways	1.24	1.47	1.34
Matarial	Lengthways	48000 Tex	48000 Tex	48000 Tex
Material	Crossways	12000 Tex	48000 Tex	48000 Tex
Binder yarn		PP 110tex		
Density (kg/m³)		1.80		

Process of specimen preparation

Geopolymer mortar is mixed in the following order: **1.** blending geopolymer cement + alkali solution; **2.** adding silica fume and micro sand; **3.** adding chopped basalt fiber and rough sand.

By weigh ratio (-)				RF content (wt % of	
Geopolymer binder	Alkali solution	Micro silica	Micro sand	Rough sand	BF content (wt % of geopolymer resin)
1	0.8	0.1	0.2	1.5	0, 3, 5, 7.5

Process of specimen preparation

Molds with dimension 400 x 100 x 15 mm

Hand lay-up method

28 day specimens ready for test

Cover using a polypropylen film

Layout of basalt fiber meshes: 1 – 4 layers was reinforced in specimens.

Layout of carbon fiber meshes: Change the layout position and 1 – 3 layers were reinforced in specimens.

Applied load at loading rate of 4 mm/min.

Three samples from each mixture were tested and average value was chosen.

Results - Flexural load – displacement curves of basalt fiber mesh geopolymer composite.

Average mechanical strength of basalt mesh geopolymer composite.

Flexural load – displacement curves of **carbon fiber mesh** geopolymer composite.

Average mechanical strength of **carbon mesh** reinforced geopolymer composite.

Effect of the layout position of textile layer in the specimens.

The effect of chopped basalt fiber on the mechanical strength

Carbon mesh of 10x15 mm

Conclusions

- Using fiber mesh with <u>small net size</u> and <u>multi-layer</u> improved significantly mechanical strength of the composite.
- 2. No impact on mechanical strength when using basalt fiber mesh with big net size.
- Specimens reinforced with 1-carbon layer (<u>41 MPa</u>) have achieved flexural strength higher than 4-basalt layer (<u>29.72 MPa</u>) reinforced specimens.
- 4. Adding of <u>chopped basalt fiber</u> improved the mechanical strength of geopolymer mortar leading to enhanced flexural strength of <u>composite</u>.

THANK YOU FOR YOUR ATTENTION!

