

Microstructural characterization of calcined lithomarge geopolymer mortar

www.geopolymer.org

Aminu Shinkafi Bature

Phd Student, Centre for Research in the Built and Natural Environment, Coventry University

at the

11th Geopolymer Camp, Campus Universitaire de Saint-Quentin, University of Picardie, Saint-Quentin, France.

8th – 10th July 2019

Outline

- Introduction: Iron rich clay Binder for the future
- Mortar mixes and testing
- Results: Morphology

Mineralogical phases

Functional group classification

Conclusion

Why alternative cementitious binder?

- 4.2 Billion metric tonnes of OPC was produced globally in 2016 and steady growth is projected;
- 5% of the current global CO₂ production is attributed to Portland cement production;
- Geoplymers are among the alternatives with the potential of improving sustainability of the construction industry.

Table 1: Energy and CO2 savings of geopolymer cement; Source: (Davidovits, 2013)

Energy needs (MJ/tonne)	Calcination	Crushing	Silicate Sol.	Total	Reduction
Portland Cement	4270	430	0	4700	0
GP-cement, slag by-product	1200	390	375	1965	59%
GP-cement, slag manufacture	1950	390	375	2715	43%
CO ₂ emissions (tonne)					
Portland Cement	1.000	0.020		1.020	0
GP-cement, slag by-product	0.140	0,018	0.050	0.208	80%
GP-cement, slag manufacture	0.240	0.018	0.050	0.308	70%

Typical cement plant

Clay based Geopolymers

- Previous studies focus largely on GGBS, PFA and Metakaolin as precursors that show promising results;
- Long term supply of these precursors may be hard to achieve in the future in many part of the world;
- Lithomarge clays are extensively available across the globe and can be viable alternative;

Utilization of SCMs; Source: Scrivener 2016

Materials

- Precursor: The flash Calcined lithomarge clay
- Fine aggregate: finer than 4.5 mm

Oxide (% by weight)	SiO ₂	Fe ₂ O ₃	Al ₂ O ₃	TiO ₂	MgO	CaO	LOI
banahmeta	35.18	25.4	29.6	2.9	1.3	0.9	< 2%

The alkali metal source

• Na₂SiO₃ solution; MR = 2.05

- $Na_2SiO_3.5H_2O$
- NaOH

Mortar Mixes

Mass ratio of mixes

Group 1	Sand		CC – 32SH			CC – 44.1SSP	
L:B		Calcined clay	32% NaOH solution	Free water	Calcined clay	44.1% Na ₂ SiO ₃ .5H ₂ O	Free water
0.8	723	723	579	0	723	579	0
Group 2 (CC - 54.5SS)	Sand		Calcined clay		5	Free water	
1	1221		297			297	84
1.5	1.5 1221 238				84		

Mix - CC : SS ratio	Na ₂ O/Al ₂ O ₃	SiO ₂ /Al ₂ O ₃	Na ₂ O/SiO ₂	H ₂ O/Na ₂ O
1	1	4.12	0.24	14.10
1.5	1.49	5.16	0.29	13.24

Tests

The Morphology

SEM micrograph for CC – 32SH mortar

SEM micrograph for CC – 44.1SSP mortar

Morphology of the Peak strength Mix

SEM image for CC - 54.5SS mortar

- The microstructure of the peak strength mix reveals a compact rock mass bulk geopolymer structure which resulted in the high strength mortar achieved by the mix.
- The SEM image also showed some dispersed cracks which is thought to be caused by the loading of the sample during compression test

XRD Results -CC Powder

Patterr	1 List										
Quan	tificat	ion A	nchor Scan Data Patt	ern List X Peak List Refinement Control Scan List Structur	e Plot						
Acce	pted I	Ref. Pa	ttern: 04-012-1905								
No.		Visible	Ref. Code	Compound Name	Chemical Formula	Score	Scale Fac	Display Color	Quality	Crystal System	SemiQuant [%]
	1	V	CDD 01-086-1560	Silicon Oxide	Si O2	46	1.048	Blue	S;ALT	Hexagonal	34
	2	V	Cp0 01-080-5405	Iron Oxide	Fe2 03	43	0.020	Lime	S;ALT	Rhombohedral	1
	3	V	CDD 01-083-3288	Calcium Carbonate	Ca (C O3)	29	0.027	Maroon	S;ALT	Rhombohedral	1
	4	V	Cpt 00-009-0466	Sodium Aluminum Silicate	Na Al Si3 O8	31	0.026	Aqua	S	Anorthic	1
	5	V	CDD 01-080-2107	Potassium Aluminum Silicate	K (AI Si3 O8)	25	0.020	Fuchsia	S;ALT	Monoclinic	3
	6	V	CDD 04-012-1905	Potassium Sodium Iron Aluminum Silicon Oxide Hydroxide	K0.8 Na0.2 Fe0.05 Al2.95 Si3.1 O10 (O H)2	24	0.023	5000080FF	S	Monoclinic	6
	7	V	CDD 04-011-6768	Potassium Sodium Aluminum Silicate	K0.22 Na0.78 AI Si3 O8	30	0.026	Yellow	I	Anorthic	4
	8	V	CDD 04-011-7479	Potassium Aluminum Iron Silicon Oxide	K0.98 Fe0.51 Al0.48 Si3.03 O8	24	0.076	Red	S	Monoclinic	9
	9	7	CDD 01-070-3754	Potassium Aluminum Silicate Hydroxide	K (AI4 Si2 O9 (O H)3)	20	0.200	Navy	I	Monoclinic	43

Position [°28] (Cobalt (Co))

Pattern List

Quantifi	catio	on And	thor Scan Data Patte	m List X Peak List Refinement Control Scan List Structure Piot							
Accepte	ed Ri	ef. Patt	tern: 01-074-1107								
No.		Visible	Ref. Code	Compound Name	Chemical Formula	Score	Scale F	Display Color	Quality	Crystal System	SemiQuant [%]
	1	Ē	CDD 04-016-9920	Sodium Aluminum Silicate Hydrate	Na24 Al24 Si24 O96 (H2 O)64.8	42	0.110	Blue	B;ALT	Cubic	10
	2	Ē	CDD 01-086-1560	Silicon Oxide	Si 02	45	0.703	lime	s;alt	Hexagonal	30
	3		CDD 01-074-2534	Sodium Aluminum Silicate Hydrate	Na96 (Al96 Si96 O384) (H2 O)384.3	43	0.247	Purple	в	Cubic	13
	4	0	CDD 01-089-0596	Iron Oxide	Fe2 03	39	0.072	Maroon	S;ALT	Rhombohedral	3
	5		CDD 04-011-5456	Sodium Magnesium Sulfate Hydrate	Na2 Mg (S O4)2 (H2 O)4	18	0.040	Aqua	i;ALT	Monoclinic	7
	6		CDD 01-081-9794	Calcium Silicate Hydroxide Hydrate	Ca3 (SI2 O6 (O H)2) (H2 O)	24	0.058	Fuchsia	1	Orthorhombic	1
	1	Ē	CDD 01-074-1107	Potassium Aluminum Iron Silicate Hydroxide	K (AI1.91 Fe0.09) (SI3 AI) O10 (O H)2	29	0.056	Yellow	S	Hexagonal	12
	8	V	CDD 04-017-3641	Potassium Sodium Magnesium Aluminum Iron Silicon Titanium Oxide Hydroxide	K0.90 Na0.05 Mg0.32 Ti0.03 Fe0.18 Al2.11 Si3.40 O10 (O H)2	30	0.019	Red	ţ;ALT	Hexagonal	4
	9	V	CDD 01-073-9859	Potassium Sodium Aluminum Iron Magnesium Silicon Oxide Hydroxide Fluoride	K0.92 Na0.08 Al1.88 Fe0.12 Mg0.04 (Al1.08 Si2.92 O10) (O H)1.89 F0.11	25	0.055	Navy	S	Monoclinic	19
	10	V	CDD 04-011-2101	Silicon Oxide	Si O2	16	0.048	\$004080	S	Monoclinic	1

FTIR – SH80

Conclusion

 Geopolymer synthesis of the calcined clay mortar showed sensitivity to the type of chemical activator used in the system;

 utilizing hydrous Na₂SiO₃.5H₂O as activator precipitate low strength non-geopolymer matrix that has unreactive residual calcined clay which disrupt complete development of geopolymer network;

• The peak strength mix shows a rock mass microstructure

• The amount of hematite in the CC powder decrease due to alkalination in the mortar

• The 8 M NaOH solution precipitated zeolites as one of its reaction product.

