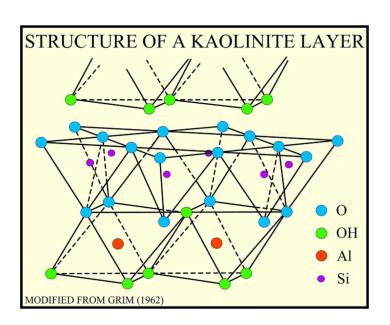
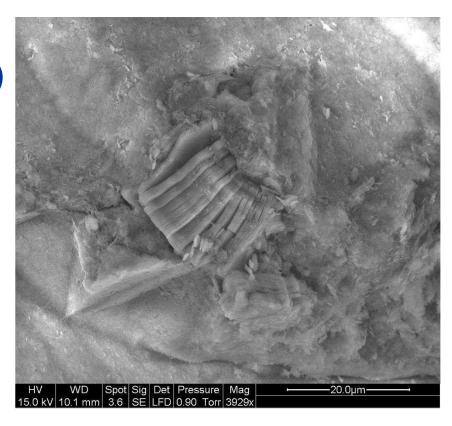
An Introduction to Metakaolins

Virginie Soleil-Raynaut Imerys -- Product Manager Kaolins & Chamottes

> Geopolymer Camp Saint-Quentin, 09 July 2019

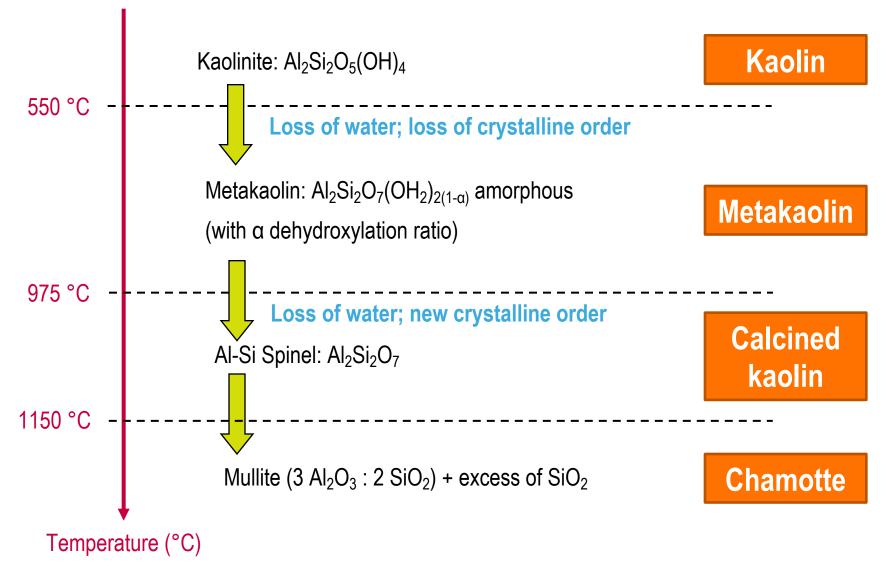
An Introduction to Metakaolins


What is Metakaolin?

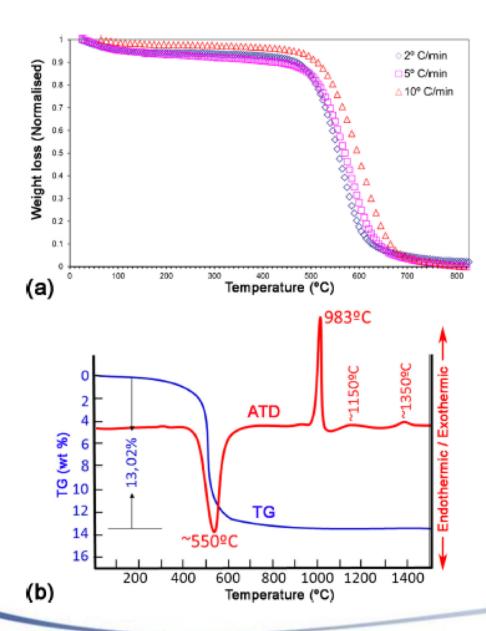

The Manufacture of Metakaolin
The Properties of Metakaolin

What is Metakaolin? -- The structure of kaolinite

■ Kaolinite is a hydrous aluminium silicate: Al₂Si₂O₅(OH)₄ or Al₂O₃ . 2 (SiO₂) . 2 (H₂O)

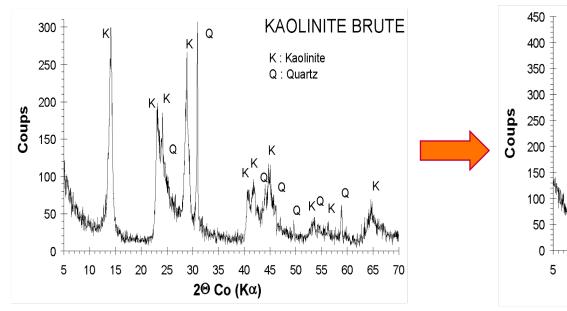


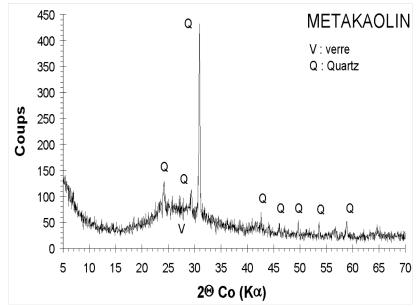
With heat, water is released from the crystalline structure and the structure is modified.



What is Metakaolin? -- The transformation of kaolinite

What is Metakaolin? -- The transformation of kaolinite


The DTA curve shows a broad endothermic peak at 550°C and a sharp exothermic peak at 983°C.


The main endothermic peak $(\sim 550 \circ C)$ is associated with the loss of weight on the TG curve.

What is Metakaolin? -- Structural characterisation

XRD shows the disappearance of the crystalline structure of kaolinite. The structure of metakaolin is amorphous.

What is Metakaolin? -- Structural characterisation

²⁷Al NMR shows the presence of Al_V, a five-coordinate species. This species is very reactive and is characteristic of metakaolin.

	Kaolinite	Metakaolin
Structure	 Al³⁺ in octahedra. Si⁴⁺ in tetrahedra. 	 Destruction of Al³⁺ octahedra. Si⁴⁺ in a polymer of tetrahedra.
²⁷ AI NMR	• Al _{VI} signal (–3 ppm).	 Al_{VI} transforms into Al_{IV} (70 ppm) & Al_V (35 ppm).
²⁹ Si NMR	• Si _{IV} signal (–90 ppm).	• "metakaolin signal" (–100 ppm).

Thermal transformations of kaolinises

Fig. 3. 27Al and 29Si MAS NMR spectra of the knotinite heated at different temperatures.

An Introduction to Metakaolins

What is Metakaolin?

The Manufacture of Metakaolin

The Properties of Metakaolin

Manufacture of Metakaolin

Feed Kaolin

- Mining
- Preparation

Calcination

- Rotary Kiln
- Flash Kiln

Milling

- Ball Mill
- Hammer Mill
- Roll-press Mill

Key performance factors

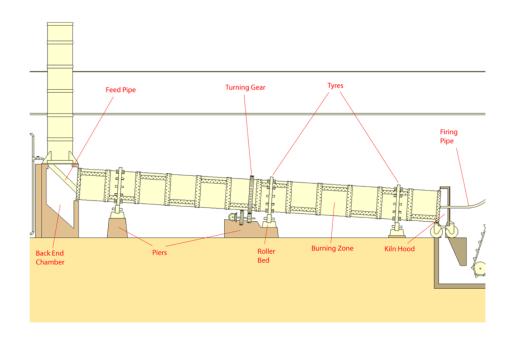
- Mineralogy
- Chemistry
- Specific Surface

Key performance factors

- Time
- Temperature
- Redox conditions

Key performance factor

Particle size



Manufacture of Metakaolin: Processes of Calcination

- There are several industrial processes to calcine a kaolin clay, some known since Antiquity.
- Two main processes used within Imerys:
 - <u>Continuous furnaces:</u> wherein loads are moved through temperature zones continuously of intermittently
 - Herreshoff multilevel kiln: UK, USA
 - Rotary kiln: France (Clérac), Ukraine (Vatutine), USA (Andersonville)
 - Flash kilns:
 - Torbed calciner: UK
 - Flash kiln FCB type: France (Clérac)

Manufacture of Metakaolin: Rotary Kiln

www.cementkilns.co.uk

Residence time: 4 hours

Rotary kiln at Imerys Refractory Minerals Clérac (France)

L= 34 m; ø 2,5 m

Throughput: 10 tonnes per hour

Fuel oil + Biogas + Sawdust

Manufacture of Metakaolin: Rotary Kiln

Advantages

- The technology is reliable and robust (similar to a cement plant).
- Efficient energy consumption: 800-1200 kWh/t
- Good throughput rate: 10-12 tonnes/h

Drawbacks

- Dehydroxylation control after heating: need to have a good knowledge of the process.
- The feed material is shaped as pellets
 → temperature gradient in the pellet.
- Product has to be milled after calcination.
- The kiln has to be run continuously so need of a certain volume or combination with other materials.

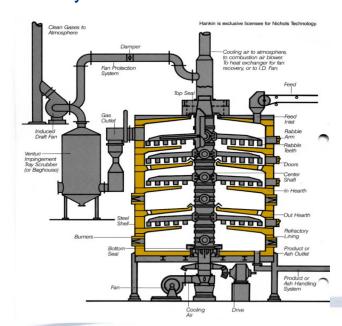
Product available:

- ARGICAL M-1000 (France)
- MK-40 (Ukraine)

Manufacture of Metakaolin: Herreshoff Kiln

Advantages

- Technology is reliable and robust (similar as rotary kiln).
- Efficient energy consumption: 600-1200 kWh/t
- Very good control of temperature of calcination


Residence time: 40 -- 60 minutes

Product available:

❖ METASTAR 501 (USA)

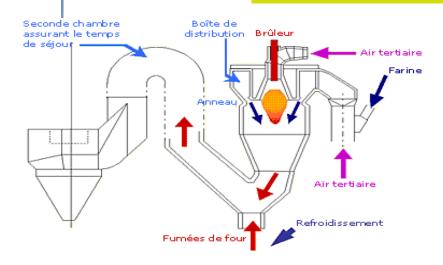
Drawbacks

- Dehydroxylation control after heating: means to have a good knowledge of the process
- Thermal inertia of the kiln
- Huge investment: 1.5-2 times more than a rotary kiln.

Manufacture of Metakaolin: Flash Kiln

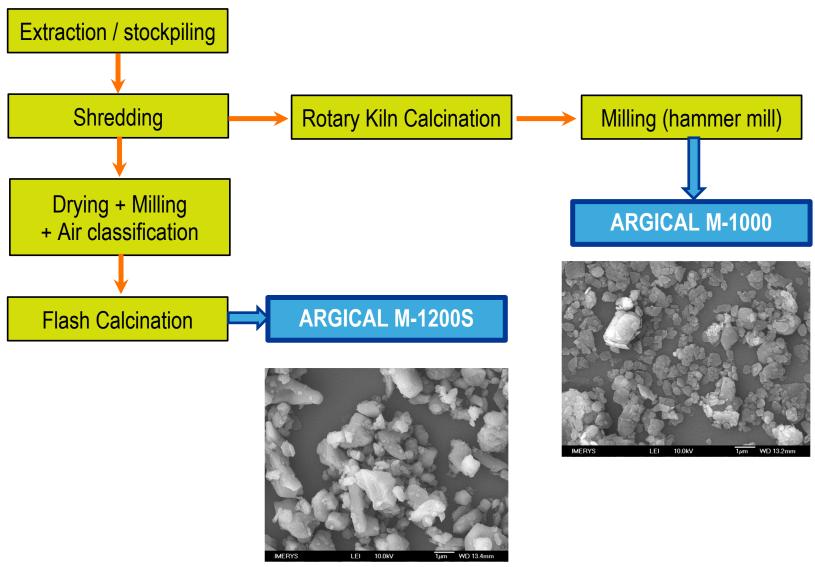
Advantages

- Really flexible: Target temperature quickly reached.
- Precise control of temperature, thus of dehydroxylation.
- Limited energy consumption: 400 to 800 kWh/t
- Capacity of kiln adapted by initial design (1 tonne/h at Clérac).
- Can produce very fine metakaolin (pre milling).


Product available:

❖ ARGICAL M-1200S (France)

Drawbacks


- Complex operational system.
- Important cost of investment.
- Milled material needed for feed.

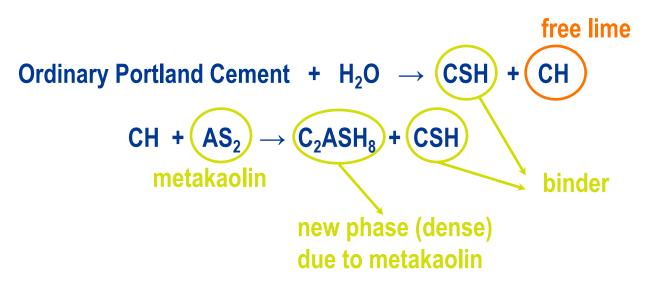
Residence time: less than 1 second

Manufacture of Metakaolin: Imerys Clérac

An Introduction to Metakaolins

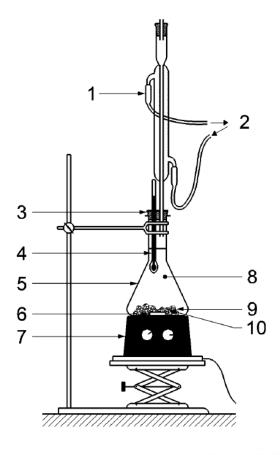
What is Metakaolin?
The Manufacture of Metakaolin
The Properties of Metakaolin

Properties of Metakaolin: Pozzolanic Activity


- Pozzolans are inorganic material composed mainly by rich siliceous or silicoaluminous amorphous phases.
- Pozzolans themselves possess no binder properties.
- In the presence of water, pozzolans chemically react with calcium hydroxide to produce compounds with binder properties.

Properties of Metakaolin: Pozzolanic Activity

- Metakaolin is an amorphous state of kaolinite obtained by firing the mineral at a temperature between 700 and 950°C.
- It is a pozzolanic material, i.e. it reacts with lime in the presence of water.
 - ◆ In cementious materials, metakaolin reacts with the lime released by the cement during its hydratation; it also reacts with the lime added in some mortars.
 - ◆ Pozzolanic reaction:



Properties of Metakaolin: Pozzolanic Activity

 On a day-to-day basis, the pozzolanic activity is measured via the modified Chapelle test.

It is an indirect measurement, based on the consumption of Ca(OH)₂ in a saturated

water medium.

- 1: Condenser
- 2: Circulation of water
- 3: Stopper with 2 holes
- 4: Thermometre
- 5: Stainless steel erlanmeyer
- 6: Magnetic stirring bar
- 7: Heating plate with magnetic stirrer
- 8: CO₂-free distilled water
- 9: CaO (2g)
- 10: Metakaolin (1 g)

Metakaolins from Imerys

	MetaStar 501	ARGICAL M- 1200S	ARGICAL M- 1000	MK-40
Origin	USA	France	France	Ukraine
Calcination	Herreshoff kiln	flash kiln	rotary kiln	rotary kiln
Pozzolanic index [mg Ca(OH)2 / g]	1400	1400	1100	1000
Surface area (BET) [m²/g]	14	23	20	15
D50 [µm]	1.0	1.5	6.0	20.0
Brightness	85	72	69	65

www.imerys.com

