

Enhancing geopolymer composites by recycled fibers

Nguyen Van Vu, Le Van Su, Petr Louda, Katarzyna Ewa Buczkowska, Roberto Ercoli, Piotr Los

Outline

² 4. Results and discussions

- Geopolymer composites can be enhanced by using chopped fibers.
- Recycled fibers are a reasonable choices from the economical viewpoint.
- The current work studied the influences of recycled fibers on the performance of geopolymer composites.

Why recycled carbon fibers?

- Recycled carbon fibers are about 2-3 times cheaper.
- The mechanical properties are mostly the same as the virgin carbon fiber.
- It is an environmentally friendly solution.

	Recycled carbon fiber (class 2.)	Virgin carbon fiber
Content of carbon fiber	>95%	100%
Density	1800 kg/m3	1780 kg/m3
Elastic modulus	>230 GPa	238 GPa
Tensile strength	>3500 MPa	3900 MPa

2. Objectives of the work

- Fibers: basalt, recycled carbon fibers: premium, class 1., class 2.
- Mechanical properties and physical properties
- Sand and fireclay were used as the major aggregates.

3. Methodology of the work

• Experimental study

Component	Ratio	Weight percentage	
Metakaolinite (Mefisto L ₀₅ - Baucis lk.)	К	34.36	
Potassium alkaline activator	0.9*K	30.92	
Silica Sand <i>or</i> Fireclay	1*K	34.36	
C-fiber/basalt	0.01*K	0.35	

Testing methods

- Mechanical properties: Instron P100 LabTest II (model 4202) (EN 196-1)
- Thermal conductivity: Netzsch HFM 436 Lambda
- Charpy impact test:
 Charpy machine PS 30

4. Results and discussions

Flexural strength

Compressive strength

10

Thermal conductivity

Thermal conductivity (W·m⁻¹·K⁻¹)

Fiber distribution in a sample

Conclusions

- The chopped fibers clearly enhanced the flexural strength of the geopolymer composites.
- The compressive strength was somewhat decreased (the present of fibers reduces the bonding between the aggregates and binder).
- The thermal conductivity did not significantly vary compared to the reference values.
- The fiber distribution influences the geopolymers' performance and the measuring accuracy.
- Future work: using recycled carbon fiber for electromagnetic shielding purpose, ...

Thank you for your attention.

Composition of the used metakaolin

Chemical composition of Mefisto L_{05} (Baucis lk.)

Chemical composition	<i>Al</i> ₂ <i>O</i> ₃	<i>Fe</i> ₂ <i>O</i> ₃	TiO ₂	SiO ₂
Percentage	41.9%	1.1%	1.8%	52.9%

Typical properties:

- · Workability at the temperature 20°C
- Maximum application temperature
- Compressive strength after 28 days
- Bending strength ratio + type of filler)
- Resistance to temperature changes
- Shrinkage after 28 day at the temperature 20°C
- Shrinkage after ignition 1000 °C
- Density of geopolymer binder
- Efflorescence
- Color

up to 60 minutes (depends on ratio + type of filler) 1200°C (depends on ratio + type of filler) min. 60MPa (depends on ratio + type of filler) 1st day min. 3MPa, 7th day min. 7MPa, 28th day min. 11MPa (depends on

very good (30 series -30°C +120°C; depends on ratio + type of filler) max. 0,5% (depends on ratio + type of filler) max. 2,0% (depends on ratio + type of filler) 1,8 – 1,9 g/cm³ (depends on ratio + type of filler) minimal grey