

doi.org/10.1021/acsomega.1c03805

Article

http://pubs.acs.org/journal/acsodf

Conductive Geopolymers as Low-Cost Electrode Materials for Microbial Fuel Cells

Shifan Zhang, Jürgen Schuster, Hanna Frühauf-Wyllie, Serkan Arat, Sandeep Yadav, Jörg J. Schneider, Markus Stöckl,* Neven Ukrainczyk,* and Eddie Koenders

Cite This: ACS Omega 2021, 6, 28859-28870

Neven Ukrainczyk

Read Online ukrainczyk@wib.tu-darmstadt.de

TECHNISCHE UNIVERSITÄT DARMSTADT

INSTITUT FÜR WERKSTOFFE IM BAUWESEN

Shifan Zhang PhD student

Dr. Chem. Ing. Neven Ukrainczyk Team Lead (@ WiB)

TU Darmstadt > Faculty > Institute > Institute of Construction and Building Materials > Team

Sustainable Electrochemistry

Dr. Markus Stöckl

Outline

- 1. Intro
- 2. Raw Materials
- 3. Mix designs
- 4. Results
 - a. Conductive geopolymer for MFC
 - b. Leaching/acids durability
- 5. Conclusions

Geopolymers are nano-materials

Geopolymerisation \rightarrow hydrolisis/condensation reaction

Vogt, Ukrainczyk et al. (2019) Reactivity and Microstructure of Metakaolin Based Geopolymers: Effect of Fly Ash and Liquid/Solid Contents, *Materials* 12(21) 3485. doi.org/10.3390/ma12213485

Raw materials: Metakaolin pecursors: - Impure (Qz-rich) vs. Pure

MK2 ~ 90 % amorphous

Institute of Construction and Building Materials | Dr. Ukrainczyk | Keynote: Conductive Geopolymers | Geopolymer camp (July 4-6, 2022) Slide 4

2θ, °2Cu Kα2

Raw materials: Graphite

Electrodes for MFC: high electrical conductivity, noncorrosiveness, high and accessible surface area, excellent biocompatibility, low costs, ease of fabrication, and scalability.

Mix designs: Geopolymer-graphite composite

GP	wg/mtk in wt %	w/graphite in wt %	graphite in vol %	PCE/graphite
GP ref.	0.8		0	0.1
GP08 1W 1C	0.8	1	1	0.1
GP08 1W 2C	0.8	1	2	0.1
GP08 1W 3C	0.8	1	3	0.1
GP08 1W 5C	0.8	1	5	0.1
GP08 1W 7C	0.8	1	7	0.1
GP08 1W 8C	0.8	1	8	0.1
GP08 1W 9C	0.8	1	9	0.1
GP08 1W 10C	0.8	1	10	0.1
GP08 1.2W 10C	0.8	1.2	10	0.1
GP08 1.7W 10C	0.8	1.7	10	0.1
GP08 2W 10C	0.8	2	10	0.1

Mix designs: Portland Cement – Graphite

PCG	w/c in wt %	f/c in wt %	graphite (G) in vol %	PCE/g	raphite in wt %
PC ref.	0.6	0	0	0	
PC06 1C	0.6	0	1	0	
PC06 3C	0.6	0	3	0	1 percent
PC06 4C	0.6	0	4	0	
PC06 9C	0.6	0	9	0.1	E
PC06 3F 8C	0.6	0.3	8	0.1	<u>ka</u> etat
PC06 3F 9C	0.6	0.3	9	0.1	
PC06 3F 10C	0.6	0.3	10	0.1	SIL CERTIN
PC75 8C	0.75	0	8	0.1	
PC75 9C	0.75	0	9	0.1	
OPC75 10C	0.75	0	10	0.1	

Results: el. conductivity

MFC electrochemistry

Results: Electrochemical

- impedance spectroscopy & MFC current production

Results: SEM

Percolation of graphite plates

Results: e-SEM-EDS

Results: Biofilm affinity

Conclusion Part1: GP-MFC

- Good electrical conductivity (G) by percolation of Graphite (@7-8 vol.%)
 - ionic conductivity has minor contribution
 - Only for GP, but not PC (very poor anode performance)
 - Drying increased G (percolation, interface chemistry? effects)
- More graphite in GP increases G and MFC current density
 - Comparable to Graphite reference anode
- Porosity provides space for microorganisms
 - increases G (fixed 10 vol.% Graphite, but more percolated in solid part)
- Low cost electrode
 - to increase feasibility of MFC large-scale applications

Ongoing research: Nano-GP project

Multiscale modeling of advanced nanoreinforced geopolymer/CNTs materials

https://gepris.dfg.de/gepris/projekt/446266595

Exp. n-Materials Scientist

Computational chemistry DFT-KMC

Past research: GP durability: leaching in water and acids

Harsh (bio)acid enviroments:

- Sewers
- Wastewater treatment plants
- Food industry
- Agricultural industry
- Biogas
- CO₂ sequestration
- ...

Ukrainczyk et al. (2019) Geopolymer, Calcium Aluminate, and Portland Cement-Based Mortars: Comparing Degradation Using Acetic Acid, *Materials* 12(19) 3115. <u>doi.org/10.3390/ma12193115</u>

Grengg, Ukrainczyk et al. (2020) Long-term in situ performance of GP, CAC and PC-based materials exposed to microbially induced acid, *Cement and Concrete Research* 131106034. <u>doi.org/10.1016/j.cemconres.2020.106034</u>

Drugă, Ukrainczyk* et al. (2018) Interaction between wastewater microorganisms and geopolymer or cementitious materials, Int. Biodeter. & Biodegradation, 134 58-67. doi.org/10.1016/j.ibiod.2018.08.005

Sedić, **Ukrainczyk*** et al. (2020) Carbonation of Portland-Zeolite and geopolymer well-cement composites under geologic CO₂ sequestration, Cement and Concrete Composites, 111 103615. <u>https://doi.org/10.1016/j.cemconcomp.2020.103615</u>

Comparison of acid attack:

- different binders and acid types

		GP-M Coonseluments	Calaium	Destland	PC-M
		(low C)	aluminate cement (low S)	cements (low A)	
Solubility	High	K⁺/Na⁺ from K(Na)-A-S-H gel	C ₃ AH ₆ ; CH; (CAH ₁₀ , C ₂ A(S)H ₈) Ca from S-H		
	Medium	Al from A-S-H gel	A-H gel; (AH ₃)	(A-H gel)	
	Low	S-H gel	(S-H)	S-H gel	
Precipitation	in H ₂ SO ₄	Expansive salts inducing cracks:			
		KAl ₃ (SO ₄) ₂ (OH) ₆ ; KAl(SO ₄) ₂ ·12H ₂ O; K ₂ Ca(SO ₄) ₂ ·H ₂ O; CaSO ₄ ⋅ xH ₂ O	$CaSO_4 \cdot xH_2O$	CaSO ₄ · xH ₂ O	
	in acetic acid (or HCl, HNO ₃)	Practically no precipitation of highly soluble acid salts			

How to measure and model geopolymers leaching and acid attack?

Leaching in water: CEN/TS 16637-2:2014, ASTM C1308-08, .. Acid attack: ASTM C267-01, DIN 19573

.... Should be **adapted** for geopolymers!

Grengg, Gluth, Ukrainczyk et al. (2021) Deterioration mechanism of AAMs in sulfuric acid, Cement and Concrete Research, 142 106373. https://doi.org/10.1016/j.cemconres.2021.106373

Ukrainczyk and Vogt (2021) Geopolymer leaching in water and acetic acid, *Rilem Technical Letters*, 50, 163-173. doi.org/10.21809/rilemtechlett.2020.124

Ukrainczyk (2021) Simple Model for Alkali Leaching from Geopolymers, Materials 14(6):1425. doi.org/10.3390/ma14061425

Acid vs. Water (pure MK2)

Ukrainczyk and Vogt (2021) Geopolymer leaching in water and acetic acid, *Rilem Technical Letters*, 50, 163-173. doi.org/10.21809/rilemtechlett.2020.124

Leaching rates & Modeling (D_{app})

TECHNISCHE UNIVERSITÄT DARMSTADT

Effects of: 1) ,metakaolin purity' 2) acid concentration

SEM-EDS (2D mapping \rightarrow conc. profile) 1) Acetic acid (0.1 M, 56 days)

Demonstration results in sewers

TECHNISCHE UNIVERSITÄT DARMSTADT

Microstructural and I	Biofilm analysis	Field conditions↓	Geopolymers (low C)	Calcium aluminate cement (low S)	Portland cement (low A)
[a] Grengg, Ukrainczyk et al. (2020) Long-term in situ performance of GP, CAC and PC-based materials exposed to microbially induced acid corrosion, Cement and Concrete Research 131106034. <u>doi.org/10.1016/j.cemconres.2020.106034</u>		$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.2 mm 2.1 mm	0.5 mm 3.2 mm	3.9 mm 9.5 mm
[b] Drugă, Ukrainczyk* et al. (2018) Interaction betweer or cementitious materials, <i>Int. Biodeter. & Biodegradation</i> , 134 58-67. doi.org/	wastewater microorganisms and geopolymer 10.1016/j.ibiod.2018.08.005	Activated sludge tank [b] (35 days, biogenic HNO ₃)	0	45 µm	95 µm
GPC	CAC	OPC		UHPC	2

Summary 2: leaching/acid resistance

- SEM-EDS & EPMA mappings are powerful tool for GP degradation
- 0.1 M <u>AcH</u> (56d) resulted in sharp dissolution of AI:
 - degradation zone of 1 mm depth
 - K⁺ profile: gradual dissolution
 - \rightarrow a transition zone (0 5.5 mm depth)

- in <u>water</u>:
 - negligible dissolution of Al,
 - but significant dissolution of Si (and K) reaching
 - a degradation depth of 0.16 mm

Summary 2

TECHNISCHE UNIVERSITÄT DARMSTADT

Multi-stage mechanism for GP acid attack:

- Cation exchange reaction between the cation X⁺ and the (Na⁺ or K⁺);
- Partial **de-alumination** dissolution of the aluminosilicate framework;
- Precipitation of acid anion **Salts** (acetic highly soluble; sulfate expansive);
- Dissolution and re-crystallization of the **Si-rich** aluminosilicate framework.

Ukrainczyk and Vogt (2021) Geopolymer leaching in water and acetic acid, Rilem Technical Letters, 50, 163-173. doi.org/10.21809/rilemtechlett.2020.124 Grengg, Gluth, Ukrainczyk et al. (2021) Deterioration mechanism of AAMs in sulfuric acid, Cement and Concrete Research, 142 106373. doi.org/10.1016/j.cemconres.2021.106373

Summary 2

- Lower leaching rates in pure-metakaolin compared to quartz-rich one
 - due to different mix designs and (mechanical, porosity and chemical) properties.
 - *D*_{app} governed by **the chemistry** (cation exchange and dissolution)
 - and **not by** *D*_{eff} (porosity and pore morphology).

Ukrainczyk (2021) Simple Model for Alkali Leaching from Geopolymers, *Materials* 14(6):1425. doi.org/10.3390/ma14061425

New methodology:

- Standard for leaching in pure water
 - adapted for (acetic) acid attack of geopolymers
- The diffusion model can accurately represent the (*CFL*) measurements
- Future (ongoing) research: more advanced (numerical) models
 - to separate *D*_{eff} from **chemical part**

$$P\frac{\partial c}{\partial t} = -D_{eff} \frac{\partial^2 c}{\partial x^2} - (1-P)\rho_s \frac{\partial C}{\partial t}$$

TECHNISCHE Acknowledgement 1: GP-MFC UNIVERSITÄT DARMSTADT ACS TECHNISCHE UNIVERSITÄT DARMSTADT http://pubs.acs.org/journal/acsodf Article Conductive Geopolymers as Low-Cost Electrode Materials for Institute of Microbial Fuel Cells Construction and Shifan Zhang, Jürgen Schuster, Hanna Frühauf-Wyllie, Serkan Arat, Sandeep Yadav, Jörg J. Schneider, **Building Materials** Markus Stöckl,* Neven Ukrainczyk,* and Eddie Koenders 0 Cite This: ACS Omega 2021, 6, 28859-28870 **Read Online** DECHEMA FORSCHUNGSINSTITUT Stiftung bürgerlichen Rechts Dep.: - Electrochemistry, - Industrial Biotechnology Funds: "Zukunft Bau" of Federal Institute for Building, TECHNISCHE Urban and Regional Research (project: SWD-10.08.18.7-18.25) UNIVERSITÄT

- "PV-WALL" PZS-2019-02-1555

DARMSTADT

IWAR -

Abwasserwirtschaft

INSTITUT FÜR

WERKSTOFFE

TECHNISCHE

UNIVERSITÄT