

IMT-Université de Lille

RÉPUBLIQUE FRANÇAISE Liberté Égalité

Geopolymer applications for concrete and brick technology.

Associate Prof., Dr., Mouhamadou AMAR

IMT Nord Europe

With :

- Abdoul R. LANKOANDE
- Phillipe N. OUEDRAOGO
- Nor-Edine ABRIAK
- Sié KAM
- Mahfoud BENZERZOUR
- Ali ALLOUL
- Elie MAHFOUD

#IMTomorrow

#IMTNordEurope 2

Calcination/ Activation of mineral materials

Flash calcination principle

Fine grinding after drynig (before calcination)

Broyeur à boulets

Optimization of initial characteristics

Calcination/ Activation of mineral materials

Flash calcination principle

Pilot unit

RÉPUBLIQUE FRANÇAISE Liberté Egyitté Egyitté

Calcination/ Activation of mineral materials

Flash calcination principle

- Physico-mineralogical modifications: **density and fineness increase** if the material is rich in carbonates.
- The **reactivity** of the final product is correlated with the **fineness**, to the content in **aluminosilicates**.
- For materials rich in clays of the [T-O-T] type (illite, smectite, etc.), the degree of activation is relatively limited

> Geopolymer Formulations

		Weight (%)				Ratios			
		Mix	FCS	FCC	MK	GGBF	AR/B	S/B	W/B
		Composition							
Reference mix	-	MK0	_	_	100	-	0.8	2.64	0.45
Group with FCS		S1	24	_	76	0	0.8	2.64	0.45
	\neg	S2	20	-	70	10	0.8	2.64	0.45
		S3	16	-	64	20	0.8	2.64	0.45
Group with FCC		C1	_	27	73	0	0.8	2.64	0.45
	\neg	C2	_	23	67	10	0.8	2.64	0.45
		С3	-	19	61	20	0.8	2.64	0.45

FCS: Flash Calcined Sediment

• FCC: Flash Calcined Clay

• MK: Metakaolin

• GBFS: Slag

• AR: Alkaline Reagent

٠

Liberté Égalité Fraternité

Percentage (%) of each precursor

IMT Nord Europe École Mines-Télécom IMT-Université de Lille

• AR/B=0.4

Not Workable

Compressive strength results

IMT-Université de Lille

IMT Nord Europe École Mines-Télécom RÉPUBLIQUE FRANÇAISE

MK0

Group with FCS

S1 S2 S3

- Day 1= 15 MPa.
- Day 3= 55 MPa.
- Day 7-28 = 58 MPa.
- Day 90 = 59 MPa.

#IMTomorrow

- Day 1= 22-36 MPa.
- Day 3= 44-46 MPa.
- Day 7-28 = 50 MPa.
- Day 90 = 53-55 MPa.

Group with FCC

C1 C2 C3

- Day 1= 10-35 MPa.
- Day 3= 42-45 MPa.
- Day 7-28 =47-48 MPa.
- Day 90 = 49-54 MPa.

#IMTNordEurope **10**

> High-temperature resistance test

- Temperature range 200 °C to 400 °C, range of 25 °C/min.
- Temperature increased from 400 °C to 800 °C, range of 5 °C/min.

- Low loss in mass.
- S1, S2, C1, and C2 showed lower strength loss than MK0.
- S3 and C3 showed highest strength loss.
- As CaO content increased, resistance decreased.

Only change in color, no cracks.

- FCS Group: S1, S2, S3
- FCC Group: C1, C2, C3

#IMTomorrow

#IMTNordEurope 11

Freeze and Thaw test (ASTM C666-97)

• Cycle:

Liberté Égalité Fraternit

2. -18 ± 2 °C for 18 hours. 4 ± 2 °C for 6 hours. 1.

Day 35: Linear increase in compressive strength loss. ٠

C3: 24 %

MK0: 14 %. •

S3: 18 %

- **S1:** 8 % **C1:** 18 % • •
- **S2:** 15 % C2: 20 % ٠ •

•

FCS Group: S1, S2, S3 • **FCC Group: C1, C2, C3**

•

Macropores,

#IMTNordEurope **1**4

Formulation and optimisation

Formulation of sediment-based geopolymers

Compressive strenht

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternit

=

- Geopolymers with a low ALK/B ratio are the most resistant and durable.
- The **GGBFS** content is correlated with resistance but reduces the workability of geopolymers.
- Geopolymers based on flash-sediments have shown structural stability (tetra-coordination) and are non-hazardous.

Work carried out as part of the supervision of Ali Alloul's thesis (2021-2024).

[AP4], [AP5],[AP8]

Liberté Égalité Fraternita

Formulation of excavated soils-based geopolymers

Formulations	Mix 8	Mix 9	Mix 10	Mix 11	Mix 12
Slump (cm)	no	no	12	17	27
Visual aspect	Hirds Arib-D3 alter adding DomL sub-loke day	Mix-9 Al/B-0.45	Mir.10 Alf3.0.6	Mix-11 Al/B-0.75 Slump-17cm	Mix-12 AVE-0.9 Slump-27cm

-

- Microstructural analyses such as NMR, XRD, and FTIR reveal a stable 3D polymeric structure with strong Si–O–Al–O bonds.
- An ALK/B ratio of 0.75 provides optimal performance.

Geopolymer synthesis

Formulation and optimisation

Formulation of excavated soils-based geopolymers

Geopolymer synthesis

Formulation and optimisation

SEM-EDS analyses

Work carried out during the supervision of the postdoctoral of Elie Mahfoud (2024)

Formulation of excavated soils-based geopolymers

Geopolymer synthesis

Formulation and optimisation

IRFT

MIP (Mercury Intrusion Porosity)

	Mean pores diameter (4V/A)	Total intrusion	Total pores surface (m²/g)	Total porosity (%)
	(nm)	volume (ml/g		
RMPC	58.05	0.066	4.571	14.05
(Port Cem)				
RMGP	34.54	0.0355	4.109	8.06
MFCC10P2	18.62	0.0296	6.358	6.92
MFCC20P2	18.15	0.0334	7.369	7.70
MFCC30P2	18.70	0.0346	7.405	7.99
MFCC50P2	18.10	0.0340	7.505	7.78

- Mechanical strength increases as the ALK/B ratio decreases.
 - Consistency decreases as the ALK/B ratio decreases.
 - 20–30% LHF appears to be a good compromise (performance).
 - Siloxo (Si–O–Si–O) and sialate (Si–O–Al–O) bonds have been identified.
 - The porous structure of the geopolymer is "better" compared to that of Portland cement-based materials.

Ę

₹<u>_</u>_

#IMTNordEurope **19**

Raw laterite

Raw clay

#IMTNordEurope 21

Materials and Methods

Calcined laterite

RÉPUBLIQUE FRANÇAISE Liberté Agalité Fraternité

Calcined clay

Earth material for brick

Conditioning before treatment

Mixing of the different components before compression

Labotest press used for brick making

Total immersion for 2 hours before wet compression

Differents CEBs

Compression test

Liberté Égalité Fraternité

XRD and FTIR spectra of CEBs

-Silty soil CEB OPC CEB_MKL20 CEB_MKL20 - CEB_MKL40 CEB OPC CEB MKL40 -CEB_MKLC20 BTC_MKLC20 CEB_MKLC20 ······ CEB_MKLC40 - Silty Soil Q: Quartz MCO₃ MCO₃ MCO₃ SiO Al₂OH H₂O C: Calcite K: Kaolinite **Cl: Clinochlore D: Dolomite** I: Illite Q С Cl QCQQCQ ı Q D Q Q Q 10 20 30 40 50 60 70 80 3600 3100 2600 2100 1600 1100 600 2-Theta Wave Number (cm⁻¹)

Figure : XRD of differents CEBs and silty soil

Figure : IRFT spectra of differents CEBs and Silty Soil

Results and discussion

Characterization of CEBs

Compressive strenght and capilarry water absorption of CEBs

Figure : Capillary water absorption of CEBs exposed to prolonged partial immersion

#IMTomorrow

#IMTNordEurope 25

Compressive strength after 7

and 28 days

Best Performing Geopolymer Bricks

BS-1 Sample: This geopolymer demonstrates the best performance among geopolymers, with a compressive strength of 12.15 MPa after 28 days. It exhibits a consistent improvement over time and provides a strong alternative to traditional materials.

Red Geopolymer Brick: Outstanding performance under oven-cured conditions with a strength of 16.22 MPa at 7 days, suggesting high early strength and faster curing, beneficial for projects with tight deadlines.

#IMTNordEurope 26

Liberté Égalité Fraternité

Development of bioreagent \rightarrow "biopolymers"

GEL PREPARATION

Arabica gum gel in a container

The bark of Grewia bicolor (Kel)

The bark of Grewia bicolor (Kel) gel in a container

Formulation using Arabica gum

RÉPUBLIQUE FRANÇAISE Liberté Agatité Fraternité

Development of geopolymer pastes

Formulations F1(80:20) and F2 (60:40)

IMT Nord Europe

Compression Strength Formulations F1(80:20) and F2 (60:40)

F2 formulations compression testing

F1 formulations compression testing

The **mixing procedure** showed to be **effective**, all GP formulations **are hardened at room** temperature

The percentage of Al₂O₃ reacting for FCS is 30%.

Based on **compressive strength** test and **water boiling** test, the GP formulations **with the lower AR/B** are the **optimum** formulations.

NMR test showed that the designed GP formulations have a tetrahedral 3D networking

The optimal **AR/B** for the GP formulations is around **0.7-0.8**.

In comparison with MK, both FCS and FCC showed high compressive strength.

GP formulations with **lower CaO content showed higher resistance to high temperatures** and **freeze-thaw** tests.

SEM/EDS, NMR, FTIR test results showed that all GP formulations with FCS and FCC resulted in a geopolymerization reaction and 3D Tetrahedral network.

The leaching test results show that GP formulations with FCS an FCC are **not hazardous**.

Different brick types can be made using geopolymers and ranging 3-19 MPa compressive strength

"Bioreagent" and GP making with different natural clays seems to be promising

Current projects

Liberté Égalité Fraternité

Habilitation to Direct/Conduct/Supervise Research (HDR)

- September 2024
- A huge part of my research was dedicated to geopolymer technology
- \rightarrow Moving to more company and entrepreneurship collaborations

IMT-Université de Lille

- Email: mouhamadou.amar@imt-nord-europe.fr
- LinkedIn: Mouhamadou AMAR, HDR., PhD., Eng.
 - Call: (0033)3.27.71.24.13

Thanks for your attention