GEOPOLYMER IN SELF-SENSING APPLICATIONS

CHENMENG ZHANG PHD CANDIDATE IN CIVIL ENGINEERING UNIVERSITY OF SURREY 2025.07.08. GEOPOLYMER CAMP 2025

About me

About me

2019-2021

Structural engineer and project manager, Shenzhen, Shanghai & Hubei, China

High-rise building Residential building

Associate constructor certification (Hubei)

2021-2025

PhD candidate in civil and environmental engineering, University of Surrey, UK

Alkali-activated materials Self-sensing materials

GEOPOLYMER IN SELF-SENSING APPLICATIONS

CHENMENG ZHANG PHD CANDIDATE IN CIVIL ENGINEERING UNIVERSITY OF SURREY 2025.07.08. GEOPOLYMER CAMP 2025

Piezoresistive behaviour

Stress/strain

What is self-sensing materials?

Structure of self-sensing concrete (Han et al. 2014b)

Non-conductive matrix		Conductive functional fillers			Semi-conductive sensor			
Cement-based AAMs Geopolymer	Concrete Mortar Paste	Carbon/silica-based Metal-based	Particles Fibres		Self-sensing materials			

MATRIX

MATERIALS FRESH AND HARDENED PROPERTIES

Raw materials

Na₂SiO₃

Raw materials

Fly ash (class F)

Group I mix design (in kg/m³) (Zhang et al. 2024)

Mix samples

Room temperature curing

Fresh

28 days

84 days

Flowability

Flow table test

- Mixes with lower A/B, FA/GGBS and binder content led to a smaller flow spread.
- The influence of binder content may be more significant than the binder proportion.

Flowability of matrix (in mm) (Zhang et al. 2024)

Compressive strength

41 MPa at 7d and over 55MPa (cem650) 31 MPa at 7d and over 40MPa (cem460)

Compressive strength of matrix (in MPa) (Zhang et al. 2024)

50) P under the second second

11

- The highest compressive strength reached over 65 MPa at 7 days, 28 days, and 84 days.
- Compressive strength increases caused by decreasing A/B and increasing binder content.
- Mixes with the lower FA/GGBS ratio had higher compressive strength when the binder content was high.

Flexural strength

80 mm 80 mm 30mm 30mm 40 mm

- The 28-day flexural strength of the 27 mixes varied from 1.64 MPa to 5.86 MPa.
- Strength tended to increase with decreasing FA/GGBS and increasing A/B ratios.

Flexural strength of matrix (in MPa) (Zhang et al. 2024)

Embodied carbon emissions

Materials	Sand	Na ₂ SiO ₃	GGBS	FA	SP	Water	Cement	
Carbon emissions (A1-A3) (kgCO ₂ eq/ton)	2.6	1860	79.6	0.1	720	0	860	

27 mixes had much lower carbon emissions compared to cement mortar.

Embodied carbon emissions (A1-A3) of matrix (Zhang et al. 2024)

WITH FUNCTIONAL FILLERS

MATERIALS FRESH AND HARDENED PROPERTIES

Main types of conductive fillers

Better

Graphite F30G70A15B650 (M13) + graphite (5-10% by mass)

Steel fibres F30G70A15B650 (M13) + SF (0.5-5% by volume)

16

SELF-SENSING PERFORMANCE

Application of self-sensing materials

Typical application forms of self-sensing concrete for structural health monitoring (parts in red represent self-sensing concrete). (Han et al. 2014a)

Schematic of smart bricks for masonry structures health monitoring (García-Macías and Ubertini 2019)

Schematic diagram of a self-sensing pavement structure for vehicle detection (Han et al. 2015)

Components that are much easy to be broken

Cracks due to the normal sensors

Types of resistance-based measurements

(a)

(b)

Two-probe (2P) method (Piro et al. 2023)

Electrode array for geopolymer sensing applications (**a**) serial arrangement (**b**) Van der Pauw arrangement (Vlachakis et al. 2020)

Four-probe for compression test of cube (Mizerová et al. 2021)

Layout of the AC Wheatstone bridge setup (Ferdiansyah et al. 2022; Shahzad et al. 2022)

Without conductive fillers-b3

2-probe 4-wire

Without conductive fillers-b8

0.25

Zigzag instead of 19 wires

2-probe 4-wire

Self-sensing performance under cyclic loading

resistance

23

84days F50G50A15B650 (M4)

Self-sensing performance under cyclic loading

84days CEM650

Geopolymer with graphite and recycled tyre steel fibres

F30G70A15B650 (M13) + 5% graphite at 7days

Original data

After remove noise

F30G70A15B650 (M13) + 5% graphite at 7days

F30G70A15B650 (M13) + 5% steel fibres at 7days

Geopolymer with graphite and recycled tyre steel fibres

FCR(%) to 20MPa at 7 days

Self-sensing performance under cyclic loading at other ages? To be continued 28

Matrix

Fillers

Cement-based

- Can design mixes with water/binder ratio according to target strength
- Normal setting time
- Less iron path inside and less conductivity
- Less sensitive
- Need water curing normally
- Exist polarization

With graphite

- Better distribution
- Negative to flowability
- Negative to strength
- Less cracks after loading

Geopolymer

- Can achieve target strength but needs more trial tests
- Less setting time due to heat release
- More iron path inside and more conductivity
- More sensitive to stress changes
- Normally needs sealed air curing
- Exist polarization

With steel fibres

- Poor distribution
- Negative to flowability
- Negative/positive to strength depends on the percentage
- More tiny cracks after loading
- More conductive

Thank you for your attention!

Contact: Email: <u>chenmeng.zhang@surrey.ac.uk</u> <u>https://www.linkedin.com/in/chenmeng-zhang/</u>

Funded by University of Surrey and China Scholarship Council

References

Han, B., Yu, X. and Ou, J. 2014b. Structures of Self-Sensing Concrete. Self-Sensing Concrete in Smart Structures, pp. 1–11. doi: 10.1016/B978-0-12-800517-0.00001-0.

Piro, N.S., Mohammed, A.S. and Hamad, S.M. 2023. Compressive strength and piezoresistivity of smart cement paste modified with waste steel slag. Journal of Building Engineering 70. doi: 10.1016/j.jobe.2023.106393.

Vlachakis, C., Perry, M. and Biondi, L. 2020. Self-Sensing Alkali-Activated Materials: A Review. Minerals 2020, Vol. 10, Page 885 10(10), p. 885. Available at: https://www.mdpi.com/2075-163X/10/10/885/htm [Accessed: 25 March 2022]

Mizerová, C., Kusák, I., Topolář, L., Schmid, P. and Rovnaník, P. 2021. Self-Sensing Properties of Fly Ash Geopolymer Doped with Carbon Black under Compression. Materials 2021, Vol. 14, Page 4350 14(16), p. 4350. Available at: https://www.mdpi.com/1996-1944/14/16/4350/htm [Accessed: 11 March 2024].

Ferdiansyah, T., Balayssac, J.P. and Turatsinze, A. 2022. An Experimental Approach for Characterisation of Concrete Damage Using the Wheatstone Bridge Circuit. International Journal of Civil Engineering 20(1). doi: 10.1007/s40999-021-00659-z.

Shahzad, S., Toumi, A., Balayssac, J.P., Turatsinze, A. and Mazars, V. 2022. Cementitious composites incorporating Multi-Walled Carbon Nanotubes (MWCNTs): effects of annealing and other dispersion methods on the electrical and mechanical properties. Materiaux et Techniques 110(1). doi: 10.1051/mattech/2022020.

Han, B., Yu, X. and Ou, J. 2014a. Applications of Self-Sensing Concrete. In: Self-Sensing Concrete in Smart Structures. Elsevier, pp. 189–230. doi: 10.1016/b978-0-12-800517-0.00007-1.

García-Macías E, Ubertini F. 2019. Earthquake-induced damage detection and localization in masonry structures using smart bricks and Kriging strain reconstruction: A numerical study. Earthquake Engng Struct Dyn. 48: 548–569. <u>https://doi.org/10.1002/eqe.3148</u>

Han, B., Ding, S., and Yu, X. 2015. Intrinsic self-sensing concrete and structures: A review. Measurement, 59:110–128

Zhang. C., Bompa, D.V., Biswal, S. and Wang, Y. 2024. Performance of one-part alkali-activated materials incorporating fly ash and slag. In Proceedings of the 15th fib International PhD Symposium in Civil Engineering, Budapest, Hungary, 28–30 August 2024.